Question #162717

Let {an} ∞n=1 be a non-decreasing (resp. non-increasing) sequence which converges to a. Then prove that an ≤ a (resp. a ≤ an) for every n ∈ N.



1
Expert's answer
2021-02-12T18:09:41-0500

Let {an}n=1\{a_n\}_{n=1}^{\infty} be a non-decreasing sequence which converges to aa. Then prove that anaa_n ≤ a for every nN.n \in\mathbb N.

Let us prove by contraposition. Suppose that ak>aa_k>a for some kN.k\in\mathbb N. Therefore, aka>0a_k-a>0. Let ϵ=aka2\epsilon =\frac{a_k-a}{2}. Since {an}n=1\{a_n\}_{n=1}^{\infty} be a convergent sequence with limit aa, there exist MNM\in\mathbb N such that ana<ϵ|a_n-a|<\epsilon for every nMn\ge M. Then ϵ<ana<ϵ-\epsilon< a_n-a<\epsilon for every nMn\ge M. It follows that an<ϵ+a=aka2+a=ak+a2<ak+ak2=aka_n<\epsilon + a=\frac{a_k-a}{2}+a=\frac{a_k+a}{2}<\frac{a_k+a_k}{2}=a_k for every nMn\ge M. Let Nmax{k,M}N\ge \max\{k, M\}. Consequently, an<aka_n<a_k for every nNn\ge N, and we have a contradiction with the fact that {an}n=1\{a_n\}_{n=1}^{\infty} is a non-decreasing sequence.



Let {an}n=1\{a_n\}_{n=1}^{\infty} be a non-increasing sequence which converges to aa. Then prove that aana ≤ a_n for every nN.n \in\mathbb N.

Let us prove by contraposition. Suppose that a>aka>a_k for some kN.k\in\mathbb N. Therefore, aak>0a-a_k>0. Let ϵ=aak2\epsilon =\frac{a-a_k}{2}. Since {an}n=1\{a_n\}_{n=1}^{\infty} be a convergent sequence with limit aa, there exist MNM\in\mathbb N such that ana<ϵ|a_n-a|<\epsilon for every nMn\ge M. Then ϵ<ana<ϵ-\epsilon< a_n-a<\epsilon for every nMn\ge M. It follows that an>aϵ=aaak2=a+ak2>ak+ak2=aka_n>a-\epsilon=a-\frac{a-a_k}{2}=\frac{a+a_k}{2}>\frac{a_k+a_k}{2}=a_k for every nMn\ge M. Let Nmax{k,M}N\ge \max\{k, M\}. Consequently, an>aka_n>a_k for every nNn\ge N, and we have a contradiction with the fact that {an}n=1\{a_n\}_{n=1}^{\infty} is a non-increasing sequence.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS