Evaluate the integral of dx/1+e^x from -1 to 0
"\\begin{array}{l}\n\\int\\limits_{ - 1}^0 {\\frac{{dx}}{{1 + {e^x}}}} = \\int\\limits_{ - 1}^0 {\\frac{{1 + {e^x} - {e^x}}}{{1 + {e^x}}}dx} = \\int\\limits_{ - 1}^0 {\\frac{{1 + {e^x}}}{{1 + {e^x}}}dx} - \\int\\limits_{ - 1}^0 {\\frac{{{e^x}}}{{1 + {e^x}}}dx} = \\\\\n = \\int\\limits_{ - 1}^0 {dx} - \\int\\limits_{ - 1}^0 {\\frac{{d(1 + {e^x})}}{{1 + {e^x}}}} = \\left. x \\right|_{ - 1}^0 - \\ln \\left. {(1 + {e^x})} \\right|_{ - 1}^0 = \\\\\n = 0 + 1 - \\ln (1 + 1) + \\ln (1 + {e^{ - 1}}) = 1 - \\ln 2 + \\ln \\left( {\\frac{{e + 1}}{e}} \\right) = \\\\\n = 1 + \\ln \\left( {\\frac{{e + 1}}{{2e}}} \\right)\n\\end{array}"
Answer: "1 + \\ln \\left( {\\frac{{e + 1}}{{2e}}} \\right)"
Comments
Leave a comment