Evaluate the integral of (e^(√x)/√x) dx from 1 to 4.
Evaluate "\\int" (e^("\\sqrt{x}" )/"\\sqrt{x}" ) dx from 1 to 4
Solution
let v = "\\sqrt{x}" ; hence dv = d/dx ("\\sqrt{x}" ) = 1/(2"\\sqrt{x}" ) dx
So "\\int" (e^("\\sqrt{x}" )/"\\sqrt{x}" ) dx = "\\int" 2ev dv
Applying constant multiple rule: "\\int" c f(v) dv = c"\\int" f(v) dv with c = 2 and f(v) = ev
"\\int" 2ev dv = 2"\\int" ev dv
The integral of the exponential function is: "\\int" ev dv = ev
Therefore: 2"\\int" ev dv = 2ev
Recall that v = "\\sqrt{x}"
Therefore "\\int" (e^("\\sqrt{x}" )/"\\sqrt{x}" ) dx = 2e^("\\sqrt{x}" )
Applying the limits from 1 to 4 to the integral result we get:
2e^("\\sqrt{4}" ) - 2e^"(\\sqrt{1})" = 9.341548541
Answer: 9.341548541
Comments
Leave a comment