Question #162053

Evaluate the integral of (e^(√x)/√x) dx from 1 to 4.


1
Expert's answer
2021-03-01T06:36:42-0500

Evaluate \int (e^(x\sqrt{x} )/x\sqrt{x} ) dx from 1 to 4

Solution

let v = x\sqrt{x} ; hence dv = d/dx (x\sqrt{x} ) = 1/(2x\sqrt{x} ) dx

So \int (e^(x\sqrt{x} )/x\sqrt{x} ) dx = \int 2ev dv

Applying constant multiple rule: \int c f(v) dv = c\int f(v) dv with c = 2 and f(v) = ev

\int 2ev dv = 2\int ev dv

The integral of the exponential function is: \int ev dv = ev

Therefore: 2\int ev dv = 2ev

Recall that v = x\sqrt{x}

Therefore \int (e^(x\sqrt{x} )/x\sqrt{x} ) dx = 2e^(x\sqrt{x} )

Applying the limits from 1 to 4 to the integral result we get:

2e^(4\sqrt{4} ) - 2e^(1)(\sqrt{1}) = 9.341548541

Answer: 9.341548541

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS