Evaluate the integral of 5^(2y) dy
Evaluate "\\int" 52y dy
Solution
"\\int" 52y dy = "\\int" 25y dy
Apply exponential rule: "\\int" ay dy = (ay)/(ln a) Where a = 25 in this case
Hence "\\int" 25y dy = (25y)/(ln 25)
Simplyfying: "\\int" 25y dy = (25y)/(2ln 5)
Adding the integral constant C: "\\int" 25y dy = (25y)/(2ln 5) + C
Answer: "\\int" 52y dy = (25y)/(2ln 5) + C
Comments
Leave a comment