Evaluate the integral of (2+e^y)/(e^y) dy
∫2+eyeydy=∫(2ey+eyey)dy=∫2e−ydy+∫1dy=−∫2e−yd(−y)+∫1dy=−2e−y+y+C==−2ey+y+C\begin{array}{l} \int {\frac{{2 + {e^y}}}{{{e^y}}}dy = } \int {\left( {\frac{2}{{{e^y}}} + \frac{{{e^y}}}{{{e^y}}}} \right)} dy = \int {2{e^{ - y}}dy + \int {1dy = } } - \int {2{e^{ - y}}d( - y) + \int {1dy = } } - 2{e^{ - y}} + y + C = \\ = - \frac{2}{{{e^y}}} + y + C \end{array}∫ey2+eydy=∫(ey2+eyey)dy=∫2e−ydy+∫1dy=−∫2e−yd(−y)+∫1dy=−2e−y+y+C==−ey2+y+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments