Question #162056

Evaluate the integral of (sec a tan a/(√e^(seca))) da from 0 to π/3


1
Expert's answer
2021-02-24T14:25:36-0500

II =0π/3seca×tanaesecada=\int_{0}^{\pi/3} \dfrac{seca\times tana}{\sqrt{e^{seca}}}da


0π/3(eseca2)(seca×tana)da\rightarrow \int_{0}^{\pi/3} (e^{\dfrac{-seca}{2}})(seca\times tana )da


Substitute, u= eseca2e^{\dfrac{-seca}{2}}


Then,duda=seca×tana2da=2seca×tanaduThen, \dfrac{du}{da}=- \dfrac{seca\times tana}{2} \rightarrow da=- \dfrac{2}{seca\times tana}du


On substituting, we get


seca×tanaesecada=2eudu\int\dfrac{seca\times tana}{\sqrt{e^{seca}}}da=-2 \int e^udu + C

=2eu+C= -2 e^u +C


Now put the value of u=eseca2e^{\dfrac{-seca}{2}} in above equation,


I=2eseca20π/3I= \mid-2e^{-\dfrac{seca}{2}}\mid_{0}^{\pi/3}


On solving limit, we get

I=2e2e1I=\dfrac{2}{\sqrt e} - 2e^{-1}


On simplification,

I=e1(2e2)I=e^{-1}(2\sqrt e-2)


Hence the value of 0π/3seca×tanaesecada=\int_{0}^{\pi/3} \dfrac{seca\times tana}{\sqrt{e^{seca}}}da= e1(2e2)e^{-1}(2\sqrt e-2)


Approximation:

I=0.4773024370823822I=0.4773024370823822



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS