Evaluate the integral of (sec a tan a/(√e^(seca))) da from 0 to π/3
"I" "=\\int_{0}^{\\pi\/3} \\dfrac{seca\\times tana}{\\sqrt{e^{seca}}}da"
"\\rightarrow \\int_{0}^{\\pi\/3} (e^{\\dfrac{-seca}{2}})(seca\\times tana )da"
Substitute, u= "e^{\\dfrac{-seca}{2}}"
"Then, \\dfrac{du}{da}=- \\dfrac{seca\\times tana}{2} \\rightarrow da=- \\dfrac{2}{seca\\times tana}du"
On substituting, we get
"\\int\\dfrac{seca\\times tana}{\\sqrt{e^{seca}}}da=-2 \\int e^udu" + C
"= -2 e^u +C"
Now put the value of u="e^{\\dfrac{-seca}{2}}" in above equation,
"I= \\mid-2e^{-\\dfrac{seca}{2}}\\mid_{0}^{\\pi\/3}"
On solving limit, we get
"I=\\dfrac{2}{\\sqrt e} - 2e^{-1}"
On simplification,
"I=e^{-1}(2\\sqrt e-2)"
Hence the value of "\\int_{0}^{\\pi\/3} \\dfrac{seca\\times tana}{\\sqrt{e^{seca}}}da=" "e^{-1}(2\\sqrt e-2)"
Approximation:
"I=0.4773024370823822"
Comments
Leave a comment