Find the vertical and horizontal asymptotes of the graph of f(x)=3x+1/x^2-4. plot the graph of function and asymptotes
f(x)=3x+1x2−4Vertical assymtote: x2−4=0x=±2limx→∞f(x)=limx→∞3x+1x2−4=limx→∞3x+1x21−4x2=0Horizontal assymtote: y=0\displaystyle f(x) = \frac{3x + 1}{x^2 - 4} \\ \textsf{Vertical assymtote}:\,\, x^2 - 4 = 0\\ x = \pm 2 \\ \begin{aligned} \lim_{x \to \infty} f(x) &= \lim_{x \to \infty}\frac{3x + 1}{x^2 - 4}\\ &= \lim_{x \to \infty}\frac{\frac{3}{x} + \frac{1}{x^2}}{1 - \frac{4}{x^2}} &= 0 \end{aligned} \\ \textsf{Horizontal assymtote}:\,\, y = 0\\f(x)=x2−43x+1Vertical assymtote:x2−4=0x=±2x→∞limf(x)=x→∞limx2−43x+1=x→∞lim1−x24x3+x21=0Horizontal assymtote:y=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments