f ( x , y , z , w ) = ( x 2 y + z w , y 2 z + x w , x y z , y w ) f(x,y,z,w) = (x^{2}y + zw,y^{2}z + xw, xyz, yw) f ( x , y , z , w ) = ( x 2 y + z w , y 2 z + x w , x yz , y w )
d f = 2 y x d x + 2 z y d y + x y d z + y d w df = 2yxdx+2zydy + xydz + ydw df = 2 y x d x + 2 zy d y + x y d z + y d w
∂ f ∂ l = ∂ f ∂ x c o s α + ∂ f ∂ y c o s β + ∂ f ∂ z c o s γ + ∂ f ∂ w c o s θ \cfrac{\partial f}{\partial l} = \cfrac{\partial f}{\partial x}cos\alpha + \cfrac{\partial f}{\partial y} cos\beta + \cfrac{\partial f}{\partial z}cos\gamma + \cfrac{\partial f}{\partial w} cos\theta ∂ l ∂ f = ∂ x ∂ f cos α + ∂ y ∂ f cos β + ∂ z ∂ f cos γ + ∂ w ∂ f cos θ
Find the direction cosines:
l = ( − 1 ; 0 ; 1 ; 2 ) l 0 = l ∣ l ∣ = − i + k + 2 t 1 + 0 + 1 + 4 = − 1 6 i + 1 6 k + 2 6 t l = (-1;0;1;2)\\
l_0 = \cfrac{l}{|l|} = \cfrac{-i+k+2t}{\sqrt{1+0+1+4}} = -\cfrac{1}{\sqrt{6}}i+\cfrac{1}{\sqrt{6}}k + \cfrac{2}{\sqrt{6}}t l = ( − 1 ; 0 ; 1 ; 2 ) l 0 = ∣ l ∣ l = 1 + 0 + 1 + 4 − i + k + 2 t = − 6 1 i + 6 1 k + 6 2 t
so we have:
c o s α = − 1 6 , c o s β = 0 , c o s γ = 1 6 , c o s θ = 2 6 cos \alpha = -\cfrac{1}{\sqrt{6}},cos\beta = 0, cos\gamma = \cfrac{1}{\sqrt{6}}, cos\theta = \cfrac{2}{\sqrt{6}} cos α = − 6 1 , cos β = 0 , cos γ = 6 1 , cos θ = 6 2
so directional derivative at ( − 1 ; 0 ; 1 ; 2 ) (-1;0;1;2) ( − 1 ; 0 ; 1 ; 2 ) :
∂ f ∂ l = − 2 y x 6 + x y 6 + 2 y 6 = − y x + 2 y 6 \cfrac{\partial f}{\partial l} = -\cfrac{2yx}{\sqrt{6}} + \cfrac{xy}{\sqrt{6}} + \cfrac{2y}{\sqrt{6}} = -\cfrac{yx+2y}{\sqrt{6}} ∂ l ∂ f = − 6 2 y x + 6 x y + 6 2 y = − 6 y x + 2 y
Comments