f(x,y,z,w)=(x2y+zw,y2z+xw,xyz,yw)
df=2yxdx+2zydy+xydz+ydw
∂l∂f=∂x∂fcosα+∂y∂fcosβ+∂z∂fcosγ+∂w∂fcosθ
Find the direction cosines:
l=(−1;0;1;2)l0=∣l∣l=1+0+1+4−i+k+2t=−61i+61k+62t
so we have:
cosα=−61,cosβ=0,cosγ=61,cosθ=62
so directional derivative at (−1;0;1;2) :
∂l∂f=−62yx+6xy+62y=−6yx+2y
Comments