Please help with how you calculate directional derivative
In this question, given the function f(x,y,z,w)= [x^2y+zw, y^2z+xw, xyzyw] find the differential df and the directional derivative at [-1,0,1,2]
"f(x,y,z,w) = (x^{2}y + zw,y^{2}z + xw, xyz, yw)"
"df = 2yxdx+2zydy + xydz + ydw"
"\\cfrac{\\partial f}{\\partial l} = \\cfrac{\\partial f}{\\partial x}cos\\alpha + \\cfrac{\\partial f}{\\partial y} cos\\beta + \\cfrac{\\partial f}{\\partial z}cos\\gamma + \\cfrac{\\partial f}{\\partial w} cos\\theta"
Find the direction cosines:
"l = (-1;0;1;2)\\\\\nl_0 = \\cfrac{l}{|l|} = \\cfrac{-i+k+2t}{\\sqrt{1+0+1+4}} = -\\cfrac{1}{\\sqrt{6}}i+\\cfrac{1}{\\sqrt{6}}k + \\cfrac{2}{\\sqrt{6}}t"
so we have:
"cos \\alpha = -\\cfrac{1}{\\sqrt{6}},cos\\beta = 0, cos\\gamma = \\cfrac{1}{\\sqrt{6}}, cos\\theta = \\cfrac{2}{\\sqrt{6}}"
so directional derivative at "(-1;0;1;2)" :
"\\cfrac{\\partial f}{\\partial l} = -\\cfrac{2yx}{\\sqrt{6}} + \\cfrac{xy}{\\sqrt{6}} + \\cfrac{2y}{\\sqrt{6}} = -\\cfrac{yx+2y}{\\sqrt{6}}"
Comments
Leave a comment