Question #162666

Please help with how you calculate directional derivative

In this question, given the function f(x,y,z,w)= [x^2y+zw, y^2z+xw, xyzyw] find the differential df and the directional derivative at [-1,0,1,2]




1
Expert's answer
2021-02-24T12:05:38-0500

f(x,y,z,w)=(x2y+zw,y2z+xw,xyz,yw)f(x,y,z,w) = (x^{2}y + zw,y^{2}z + xw, xyz, yw)

df=2yxdx+2zydy+xydz+ydwdf = 2yxdx+2zydy + xydz + ydw

fl=fxcosα+fycosβ+fzcosγ+fwcosθ\cfrac{\partial f}{\partial l} = \cfrac{\partial f}{\partial x}cos\alpha + \cfrac{\partial f}{\partial y} cos\beta + \cfrac{\partial f}{\partial z}cos\gamma + \cfrac{\partial f}{\partial w} cos\theta

Find the direction cosines:

l=(1;0;1;2)l0=ll=i+k+2t1+0+1+4=16i+16k+26tl = (-1;0;1;2)\\ l_0 = \cfrac{l}{|l|} = \cfrac{-i+k+2t}{\sqrt{1+0+1+4}} = -\cfrac{1}{\sqrt{6}}i+\cfrac{1}{\sqrt{6}}k + \cfrac{2}{\sqrt{6}}t

so we have:

cosα=16,cosβ=0,cosγ=16,cosθ=26cos \alpha = -\cfrac{1}{\sqrt{6}},cos\beta = 0, cos\gamma = \cfrac{1}{\sqrt{6}}, cos\theta = \cfrac{2}{\sqrt{6}}

so directional derivative at (1;0;1;2)(-1;0;1;2) :

fl=2yx6+xy6+2y6=yx+2y6\cfrac{\partial f}{\partial l} = -\cfrac{2yx}{\sqrt{6}} + \cfrac{xy}{\sqrt{6}} + \cfrac{2y}{\sqrt{6}} = -\cfrac{yx+2y}{\sqrt{6}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS