Given: cos(5x)cos(2x)+sin(5x)sin(2x)
Recollect the following:
cos(A−B)=cosAcosB+sinAsinB
Using the above, we have
cos(5x)cos(2x)+sin(5x)sin(2x)=cosAcosB+sinAsinB,A=5x,B=2x
=cos(A−B)
=cos(5x−2x)
=cos(3x)
Therefore, cos(5x)cos(2x)+sin(5x)sin(2x)=cos(3x)
Comments
Leave a comment