Answer to Question #162837 in Calculus for Aldryan venth

Question #162837

Cos(5x)cos(2x) + sin(5x)(sin(2x)


1
Expert's answer
2021-02-24T07:12:28-0500

Given: cos(5x)cos(2x)+sin(5x)sin(2x)cos(5x)cos(2x)+sin(5x)sin(2x)

Recollect the following:

cos(AB)=cosAcosB+sinAsinBcos(A-B)=cosAcosB+sinAsinB

Using the above, we have

cos(5x)cos(2x)+sin(5x)sin(2x)=cosAcosB+sinAsinB,A=5x,B=2xcos(5x)cos(2x)+sin(5x)sin(2x)=cosAcosB+sinAsinB, A=5x,B=2x

=cos(AB)=cos(A-B)

=cos(5x2x)=cos(5x-2x)

=cos(3x)=cos(3x)

Therefore, cos(5x)cos(2x)+sin(5x)sin(2x)=cos(3x)cos(5x)cos(2x)+sin(5x)sin(2x)=cos(3x)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment