Explain if the limit of the function f(t) exist at t=1 where,
F(t)={ +5 if t<1}
{3-3t if t>1}
If limt→1f(t)\lim_{t\to1}f(t)limt→1f(t) exists then the limits limt→1+0f(t)\lim_{t\to1+0}f(t)limt→1+0f(t) and limt→1−0f(t)\lim_{t\to1-0}f(t)limt→1−0f(t) must exist and be equal.
limt→1−0f(t)=limt→1−05=5\lim_{t\to1-0}f(t)=\lim_{t\to1-0}5=5limt→1−0f(t)=limt→1−05=5
limt→1+0f(t)=limt→1+0(3−3t)=0\lim_{t\to1+0}f(t)=\lim_{t\to1+0}(3-3t)=0limt→1+0f(t)=limt→1+0(3−3t)=0
Since these limits are distinct, the limit limt→1f(t)\lim_{t\to1}f(t)limt→1f(t) does not exist.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments