Let u = 2 − x u=2-x u = 2 − x , then − d u = d x -du=dx − d u = d x and x = 2 − u x=2-u x = 2 − u
Use the above substitution to evaluate the integral as,
∫ x 2 2 − x d x = ∫ ( 2 − u ) 2 u ( − 1 ) d u \int x^2 \sqrt{2-x}dx=\int (2-u)^2 \sqrt{u}(-1)du ∫ x 2 2 − x d x = ∫ ( 2 − u ) 2 u ( − 1 ) d u
= − ∫ ( 4 + u 2 − 4 u ) u d u =-\int (4+u^2-4u) \sqrt{u}du = − ∫ ( 4 + u 2 − 4 u ) u d u
= − ∫ ( 4 u + u 2 u − 4 u u ) d u =-\int (4\sqrt{u}+u^2\sqrt{u}-4u\sqrt{u})du = − ∫ ( 4 u + u 2 u − 4 u u ) d u
= − [ 4 ( 2 3 u 3 2 ) + 2 7 u 7 2 − 4 ( 2 5 u 5 2 ) ] + C =-[4({\frac{2}{3}u^\frac{3}{2}})+{\frac{2}{7}u^\frac{7}{2}}-4({\frac{2}{5}u^\frac{5}{2}})]+C = − [ 4 ( 3 2 u 2 3 ) + 7 2 u 2 7 − 4 ( 5 2 u 2 5 )] + C
= − 8 3 u 3 2 − 2 7 u 7 2 + 8 5 u 5 2 + C =-\frac{8}{3}u^\frac{3}{2}-\frac{2}{7}u^\frac{7}{2}+\frac{8}{5}u^\frac{5}{2}+C = − 3 8 u 2 3 − 7 2 u 2 7 + 5 8 u 2 5 + C
= − 8 3 ( 2 − x ) 3 2 − 2 7 ( 2 − x ) 7 2 + 8 5 ( 2 − x ) 5 2 + C =-\frac{8}{3}(2-x)^\frac{3}{2}-\frac{2}{7}(2-x)^\frac{7}{2}+\frac{8}{5}(2-x)^\frac{5}{2}+C = − 3 8 ( 2 − x ) 2 3 − 7 2 ( 2 − x ) 2 7 + 5 8 ( 2 − x ) 2 5 + C
Therefore, the integral is ∫ x 2 2 − x d x = − 8 3 ( 2 − x ) 3 2 − 2 7 ( 2 − x ) 7 2 + 8 5 ( 2 − x ) 5 2 + C \int x^2 \sqrt{2-x}dx=-\frac{8}{3}(2-x)^\frac{3}{2}-\frac{2}{7}(2-x)^\frac{7}{2}+\frac{8}{5}(2-x)^\frac{5}{2}+C ∫ x 2 2 − x d x = − 3 8 ( 2 − x ) 2 3 − 7 2 ( 2 − x ) 2 7 + 5 8 ( 2 − x ) 2 5 + C
Comments