∫x^2 sqrt(2-x)dx
Let "u=2-x" , then "-du=dx" and "x=2-u"
Use the above substitution to evaluate the integral as,
"\\int x^2 \\sqrt{2-x}dx=\\int (2-u)^2 \\sqrt{u}(-1)du"
"=-\\int (4+u^2-4u) \\sqrt{u}du"
"=-\\int (4\\sqrt{u}+u^2\\sqrt{u}-4u\\sqrt{u})du"
"=-[4({\\frac{2}{3}u^\\frac{3}{2}})+{\\frac{2}{7}u^\\frac{7}{2}}-4({\\frac{2}{5}u^\\frac{5}{2}})]+C"
"=-\\frac{8}{3}u^\\frac{3}{2}-\\frac{2}{7}u^\\frac{7}{2}+\\frac{8}{5}u^\\frac{5}{2}+C"
"=-\\frac{8}{3}(2-x)^\\frac{3}{2}-\\frac{2}{7}(2-x)^\\frac{7}{2}+\\frac{8}{5}(2-x)^\\frac{5}{2}+C"
Therefore, the integral is "\\int x^2 \\sqrt{2-x}dx=-\\frac{8}{3}(2-x)^\\frac{3}{2}-\\frac{2}{7}(2-x)^\\frac{7}{2}+\\frac{8}{5}(2-x)^\\frac{5}{2}+C"
Comments
Leave a comment