Question #163428

solve the differential equation dy/dx + y cos x = y^3sin2x


1
Expert's answer
2021-02-24T06:50:51-0500

dydx+ycosx=y3sin2x\frac{dy}{dx}+y\cos{x}=y^3\sin{2x}

Solution:

Divide the left and right sides of the equation by y3y^3 :

1y3dydx+1y2cosx=sin2x\frac{1}{y^3}\frac{dy}{dx}+\frac{1}{y^2}\cos{x}=\sin{2x}

1y2=z\frac{1}{y^2}=z , z=2yy3z'=-2\frac{y'}{y^3} , yy3=z2\frac{y'}{y^3}=-\frac{z'}{2} .

z2+zcosx=sin2x-\frac{z'}{2}+z\cos{x}=\sin{2x}

z2zcosx=2sin2xz'-2z\cos{x}=-2\sin{2x}

z=uvz=uv , z=uv+vuz'=u'v+v'u

uv+vu2uvcosx=2sin2xu'v+v'u-2uv\cos{x}=-2\sin{2x}

uv+u(v2vcosx)=2sin2xu'v+u(v'-2v\cos{x})=-2\sin{2x}

Let's compose and solve the system:

{v2vcosx=0uv=2sin2x\begin{cases} v'-2v\cos{x}=0 \\ u'v=-2\sin{2x} \end{cases}

From the first equation:

dvv=2cosxdx\frac{dv}{v}=2\cos{x}dx

lnv=2sinx\ln|v|=2\sin{x}

v=e2sinxv=e^{2\sin{x}}

Substitute vv into the second equation:

ue2sinx=2sin2xu'e^{2\sin{x}}=-2\sin{2x}

du=2sin2xdxe2sinxdu=-\frac{2\sin{2x}dx}{e^{2\sin{x}}}

u=4sinxcosxdxe2sinx=4sinxdsinxe2sinx=\displaystyle u=-\int\frac{4\sin{x}\cos{x}dx}{e^{2\sin{x}}}=-\int\frac{4\sin{x}d\sin{x}}{e^{2\sin{x}}}=

2sinx+1e2sinx+C\displaystyle\frac{2\sin{x}+1}{e^{2\sin{x}}}+C

z=uv=e2sinx(2sinx+1e2sinx+C)=z=uv=e^{2\sin{x}}(\displaystyle\frac{2\sin{x}+1}{e^{2\sin{x}}}+C)=

2sinx+1+Ce2sinx\displaystyle2\sin{x}+1+Ce^{2\sin{x}}

1y2=2sinx+1+Ce2sinx\frac{1}{y^2}=\displaystyle2\sin{x}+1+Ce^{2\sin{x}}

Answer: 1y2=2sinx+1+Ce2sinx\frac{1}{y^2}=\displaystyle2\sin{x}+1+Ce^{2\sin{x}} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS