solve the differential equation dy/dx + y cos x = y^3sin2x
"\\frac{dy}{dx}+y\\cos{x}=y^3\\sin{2x}"
Solution:
Divide the left and right sides of the equation by "y^3" :
"\\frac{1}{y^3}\\frac{dy}{dx}+\\frac{1}{y^2}\\cos{x}=\\sin{2x}"
"\\frac{1}{y^2}=z" , "z'=-2\\frac{y'}{y^3}" , "\\frac{y'}{y^3}=-\\frac{z'}{2}" .
"-\\frac{z'}{2}+z\\cos{x}=\\sin{2x}"
"z'-2z\\cos{x}=-2\\sin{2x}"
"z=uv" , "z'=u'v+v'u"
"u'v+v'u-2uv\\cos{x}=-2\\sin{2x}"
"u'v+u(v'-2v\\cos{x})=-2\\sin{2x}"
Let's compose and solve the system:
"\\begin{cases}\n v'-2v\\cos{x}=0 \\\\\n u'v=-2\\sin{2x}\n\\end{cases}"
From the first equation:
"\\frac{dv}{v}=2\\cos{x}dx"
"\\ln|v|=2\\sin{x}"
"v=e^{2\\sin{x}}"
Substitute "v" into the second equation:
"u'e^{2\\sin{x}}=-2\\sin{2x}"
"du=-\\frac{2\\sin{2x}dx}{e^{2\\sin{x}}}"
"\\displaystyle u=-\\int\\frac{4\\sin{x}\\cos{x}dx}{e^{2\\sin{x}}}=-\\int\\frac{4\\sin{x}d\\sin{x}}{e^{2\\sin{x}}}="
"\\displaystyle\\frac{2\\sin{x}+1}{e^{2\\sin{x}}}+C"
"z=uv=e^{2\\sin{x}}(\\displaystyle\\frac{2\\sin{x}+1}{e^{2\\sin{x}}}+C)="
"\\displaystyle2\\sin{x}+1+Ce^{2\\sin{x}}"
"\\frac{1}{y^2}=\\displaystyle2\\sin{x}+1+Ce^{2\\sin{x}}"
Answer: "\\frac{1}{y^2}=\\displaystyle2\\sin{x}+1+Ce^{2\\sin{x}}" .
Comments
Leave a comment