dxdy+ycosx=y3sin2x
Solution:
Divide the left and right sides of the equation by y3 :
y31dxdy+y21cosx=sin2x
y21=z , z′=−2y3y′ , y3y′=−2z′ .
−2z′+zcosx=sin2x
z′−2zcosx=−2sin2x
z=uv , z′=u′v+v′u
u′v+v′u−2uvcosx=−2sin2x
u′v+u(v′−2vcosx)=−2sin2x
Let's compose and solve the system:
{v′−2vcosx=0u′v=−2sin2x
From the first equation:
vdv=2cosxdx
ln∣v∣=2sinx
v=e2sinx
Substitute v into the second equation:
u′e2sinx=−2sin2x
du=−e2sinx2sin2xdx
u=−∫e2sinx4sinxcosxdx=−∫e2sinx4sinxdsinx=
e2sinx2sinx+1+C
z=uv=e2sinx(e2sinx2sinx+1+C)=
2sinx+1+Ce2sinx
y21=2sinx+1+Ce2sinx
Answer: y21=2sinx+1+Ce2sinx .
Comments