For which values of a and b is the line b 2x + y = tangent to the parabola 2
y = ax
when x = 2? (2)Â
Â
"\\displaystyle\ny = ax^2 \\\\\n\ny' = 2ax \\\\\n\ny'_{\\{\\textsf{at}\\,\\, x = 2\\}} = \\textsf{Gradient} = 2(2)(a) = 4a \\\\\n\n\\textsf{At}\\,\\,\\, x = 2, y = 4a \\\\\n\n\\textsf{Equation of tangent}\\\\\n\ny - 4a = 4a(x - 2)\\\\\n\ny = 4ax + 4a - 8a = 4a(x - 1)\\\\\n\n\\textsf{If the line is equal with}\\,\\,2x + y = b,\\,\\,\\textsf{we can compare}\\\\\n\n2x + y = b \\\\\n\ny - 4ax = -4a\\\\\n\n2 = -4a, a = -\\frac{1}{2},\\,\\, b = -4a = -4 \\times -\\frac{1}{2} = 2\\\\\n\n\\therefore a = -\\frac{1}{2},\\,\\,\\textsf{and}\\,\\, b = 2"
Comments
Leave a comment