Let xn = ( 2 + (−1)^n/ n+2 ). Using the algebra of limits and standard results on limits to establish/justify if the sequence {xn} n=1 to infinity converges or diverges; find the limit in case the sequence is convergent.
"\\lim \\limits_{n \\to \\infty} \\frac{2+(-1)^{n}}{n+2} = \\lim \\limits_{n \\to \\infty} \\frac{\\frac{2}{n} + \\frac{(-1)^n}{n}}{\\frac{n}{n}+ \\frac{2}{n}}"
But
"\\lim \\limits_{n \\to \\infty} \\frac{2}{n} = 0\\\\\n\\lim \\limits_{n \\to \\infty} \\frac{(-1)^n}{n} = 0"
Also
"\\lim \\limits_{n \\to \\infty} \\frac{n}{n} = \\lim \\limits_{n \\to \\infty} 1 = 1"
"\\lim \\limits_{n \\to \\infty} \\frac{2+(-1)^{n}}{n+2} = \\frac{0+0}{1+0} = 0"
The sequence is convergent and the convergent point is zero.
Comments
Leave a comment