Let xn = ( 2 + (−1)^n/ n+2 ). Using the algebra of limits and standard results on limits to establish/justify if the sequence {xn} n=1 to infinity converges or diverges; find the limit in case the sequence is convergent.
limn→∞2+(−1)nn+2=limn→∞2n+(−1)nnnn+2n\lim \limits_{n \to \infty} \frac{2+(-1)^{n}}{n+2} = \lim \limits_{n \to \infty} \frac{\frac{2}{n} + \frac{(-1)^n}{n}}{\frac{n}{n}+ \frac{2}{n}}n→∞limn+22+(−1)n=n→∞limnn+n2n2+n(−1)n
But
limn→∞2n=0limn→∞(−1)nn=0\lim \limits_{n \to \infty} \frac{2}{n} = 0\\ \lim \limits_{n \to \infty} \frac{(-1)^n}{n} = 0n→∞limn2=0n→∞limn(−1)n=0
Also
limn→∞nn=limn→∞1=1\lim \limits_{n \to \infty} \frac{n}{n} = \lim \limits_{n \to \infty} 1 = 1n→∞limnn=n→∞lim1=1
limn→∞2+(−1)nn+2=0+01+0=0\lim \limits_{n \to \infty} \frac{2+(-1)^{n}}{n+2} = \frac{0+0}{1+0} = 0n→∞limn+22+(−1)n=1+00+0=0
The sequence is convergent and the convergent point is zero.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments