Investigate convergence or divergence of the following sequence with justification:
(√n2 + 1)(√n).
∑n=1∞ n2+1n\sum _{n=1}^{\infty \:}\sqrt{n^2+1}\sqrt{n}∑n=1∞n2+1n
Applying series convergence test
If limn→∞an≠0 then ∑an diverges\mathrm{If\:}\lim _{n\to \infty }a_n\ne 0\mathrm{\:then\:}\sum a_n\mathrm{\:diverges}Iflimn→∞an=0then∑andiverges
limn→∞ (n2+1n)\lim _{n\to \infty \:}\left(\sqrt{n^2+1}\sqrt{n}\right)limn→∞(n2+1n)
limn→∞ ((n2+1)⋅limn→∞ (n))\lim _{n\to \infty \:}\left(\left(\sqrt{n^2+1}\right)\cdot \lim _{n\to \infty \:}\left(\sqrt{n}\right)\right)limn→∞((n2+1)⋅limn→∞(n))
∞⋅∞ \infty \cdot \infty \:∞⋅∞
∞\infty∞
∑n=1∞ n2+1ndiverges\sum _{n=1}^{\infty \:}\sqrt{n^2+1}\sqrt{n}\quad \mathrm{diverges}∑n=1∞n2+1ndiverges
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments