Question #164811

Investigate convergence or divergence of the following sequence with justification:

(√n2 + 1)(√n).



1
Expert's answer
2021-02-24T06:08:08-0500

n=1n2+1n\sum _{n=1}^{\infty \:}\sqrt{n^2+1}\sqrt{n}

Applying series convergence test

Iflimnan0thenandiverges\mathrm{If\:}\lim _{n\to \infty }a_n\ne 0\mathrm{\:then\:}\sum a_n\mathrm{\:diverges}

limn(n2+1n)\lim _{n\to \infty \:}\left(\sqrt{n^2+1}\sqrt{n}\right)

limn((n2+1)limn(n))\lim _{n\to \infty \:}\left(\left(\sqrt{n^2+1}\right)\cdot \lim _{n\to \infty \:}\left(\sqrt{n}\right)\right)

\infty \cdot \infty \:

\infty

n=1n2+1ndiverges\sum _{n=1}^{\infty \:}\sqrt{n^2+1}\sqrt{n}\quad \mathrm{diverges}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS