Question #165452

A curve is given x=a(cosθ + θsinθ ) , y=a(sinθ - θcosθ) , find the length of the arc from θ=1 to θ=α?




1
Expert's answer
2021-02-24T14:21:53-0500
dxdθ=a(sinθ+sinθ+θcosθ)=aθcosθ\dfrac{dx}{d\theta}=a(-\sin\theta+\sin\theta+\theta\cos\theta)=a\theta \cos\theta

dydθ=a(cosθcosθ+θsinθ)=aθsinθ\dfrac{dy}{d\theta}=a(\cos\theta-\cos\theta+\theta\sin\theta)=a\theta\sin\theta

(dxdθ)2+(dydθ)2=(aθcosθ)2+(aθcosθ)2\sqrt{(\dfrac{dx}{d\theta})^2+(\dfrac{dy}{d\theta})^2}=\sqrt{(a\theta \cos\theta)^2+(a\theta \cos\theta)^2}

=aθ=a\theta

l=1a(dxdθ)2+(dydθ)2dθl=\displaystyle\int_{1}^a\sqrt{(\dfrac{dx}{d\theta})^2+(\dfrac{dy}{d\theta})^2}d\theta

=1aaθdθ=a[θ22]a1=a(a21)2=\displaystyle\int_{1}^aa\theta d\theta=a[\dfrac{\theta^2}{2}]\begin{matrix} a \\ 1 \end{matrix}=\dfrac{a(a^2-1)}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS