A curve is given x=a(cosθ + θsinθ ) , y=a(sinθ - θcosθ) , find the length of the arc from θ=1 to θ=α?
"\\dfrac{dy}{d\\theta}=a(\\cos\\theta-\\cos\\theta+\\theta\\sin\\theta)=a\\theta\\sin\\theta"
"\\sqrt{(\\dfrac{dx}{d\\theta})^2+(\\dfrac{dy}{d\\theta})^2}=\\sqrt{(a\\theta \\cos\\theta)^2+(a\\theta \\cos\\theta)^2}"
"=a\\theta"
"l=\\displaystyle\\int_{1}^a\\sqrt{(\\dfrac{dx}{d\\theta})^2+(\\dfrac{dy}{d\\theta})^2}d\\theta"
"=\\displaystyle\\int_{1}^aa\\theta d\\theta=a[\\dfrac{\\theta^2}{2}]\\begin{matrix}\n a \\\\\n 1\n\\end{matrix}=\\dfrac{a(a^2-1)}{2}"
Comments
Leave a comment