Question #165552

discuss the function f(x) = x^4/4 - 3x^2/2 for where mimimum and maximum


1
Expert's answer
2021-02-24T06:00:20-0500

Solution.

f(x)=x443x22f(x)=\frac{x^4}{4}-\frac{3x^2}{2}

Find f(x)=4x3432x2=x33x.f'(x)=4\frac{x^3}{4}-3\frac{2x}{2}=x^3-3x.

Make and solve equation f(x)=0.f'(x)=0.


x33x=0,x(x23)=0,x1=0, or x2=3, or x3=3.x^3-3x=0,\newline x(x^2-3)=0,\newline x_1=0, \text{ or }x_2=\sqrt{3},\text{ or }x_3=-\sqrt{3}.


Investigate the sign of the derivative at each interval:



From here 3\sqrt{3} and 3-\sqrt{3} are minimum points, is maximum point.

fmin(3)=3443322=9492=94=214.f_{min}(\sqrt{3})=\frac{\sqrt{3}^4}{4}-\frac{3\sqrt{3}^2}{2}=\frac{9}{4}-\frac{9}{2}= -\frac{9}{4}=-2\frac{1}{4}.

fmin(3)=(3)443(3)22=9492=94=214.f_{min}(-\sqrt{3})=\frac{(-\sqrt{3})^4}{4}-\frac{3(-\sqrt{3})^2}{2}=\frac{9}{4}-\frac{9}{2}= -\frac{9}{4}=-2\frac{1}{4}.

fmax(0)=0.f_{max}(0)=0.

Answer. fmin=214,fmax=0.f_{min}=-2\frac{1}{4}, f_{max}=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS