discuss the function f(x) = x^4/4 - 3x^2/2 for where mimimum and maximum
Solution.
"f(x)=\\frac{x^4}{4}-\\frac{3x^2}{2}"
Find "f'(x)=4\\frac{x^3}{4}-3\\frac{2x}{2}=x^3-3x."
Make and solve equation "f'(x)=0."
Investigate the sign of the derivative at each interval:
From here "\\sqrt{3}" and "-\\sqrt{3}" are minimum points, is maximum point.
"f_{min}(\\sqrt{3})=\\frac{\\sqrt{3}^4}{4}-\\frac{3\\sqrt{3}^2}{2}=\\frac{9}{4}-\\frac{9}{2}=\n-\\frac{9}{4}=-2\\frac{1}{4}."
"f_{min}(-\\sqrt{3})=\\frac{(-\\sqrt{3})^4}{4}-\\frac{3(-\\sqrt{3})^2}{2}=\\frac{9}{4}-\\frac{9}{2}=\n-\\frac{9}{4}=-2\\frac{1}{4}."
"f_{max}(0)=0."
Answer. "f_{min}=-2\\frac{1}{4}, f_{max}=0."
Comments
Leave a comment