Question #166377

Evaluate the double integral sin(y^3)dA where R is the region enclosed by y=√x , y=2,y=0 .


1
Expert's answer
2021-02-25T05:06:51-0500

Given region is -

f(x,y)=sin3yf(x,y)=sin^3y and region is y=x,y=0,y=2y=\sqrt{x},y=0,y=2


So The integral is given by


The limits for double integral for x=0 to x=y2x= 0 \text{ to }x=y^2 and for y=0 to y=2y=0 \text{ to } y=2


=020y2sin(y3)dxdy\int_0^2\int_0^{y^2}sin(y^3)dxdy


=02sin(y3)[x]0y2dy\int_0^2sin(y^3)[x]_0^{y^2}dy


=02sin(y3)y2dy\int_0^2sin(y^3)y^2dy


let y3=t    3y2dy=dt    y2dy=dt3y^3=t\implies 3y^2dy=dt\implies y^2dy=\dfrac{dt}{3}


At y=0,t=0 and at y=2,t=y3=(2)3=8y=0, t=0 \text { and at } y=2,t=y^3=(2)^3=8


=08sint3dt=\int_0^{8}\dfrac{sint}{3}dt


=13[cost]08=\dfrac{1}{3}[-cost]_0^{8}


=13(cos0cos64)=\dfrac{1}{3}(cos0-cos64)


=13(1cos8)=\dfrac{1}{3}(1-cos8)


=13(10.964)=\dfrac{1}{3}(1-0.964)


=0.0363=0.012 sq. units \\=\dfrac{0.036}{3}\\=0.012 \text{ sq. units }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS