Given region is -
f ( x , y ) = s i n 3 y f(x,y)=sin^3y f ( x , y ) = s i n 3 y and region is y = x , y = 0 , y = 2 y=\sqrt{x},y=0,y=2 y = x , y = 0 , y = 2
So The integral is given by
The limits for double integral for x = 0 to x = y 2 x= 0 \text{ to }x=y^2 x = 0 to x = y 2 and for y = 0 to y = 2 y=0 \text{ to } y=2 y = 0 to y = 2
=∫ 0 2 ∫ 0 y 2 s i n ( y 3 ) d x d y \int_0^2\int_0^{y^2}sin(y^3)dxdy ∫ 0 2 ∫ 0 y 2 s in ( y 3 ) d x d y
=∫ 0 2 s i n ( y 3 ) [ x ] 0 y 2 d y \int_0^2sin(y^3)[x]_0^{y^2}dy ∫ 0 2 s in ( y 3 ) [ x ] 0 y 2 d y
=∫ 0 2 s i n ( y 3 ) y 2 d y \int_0^2sin(y^3)y^2dy ∫ 0 2 s in ( y 3 ) y 2 d y
let y 3 = t ⟹ 3 y 2 d y = d t ⟹ y 2 d y = d t 3 y^3=t\implies 3y^2dy=dt\implies y^2dy=\dfrac{dt}{3} y 3 = t ⟹ 3 y 2 d y = d t ⟹ y 2 d y = 3 d t
At y = 0 , t = 0 and at y = 2 , t = y 3 = ( 2 ) 3 = 8 y=0, t=0 \text { and at } y=2,t=y^3=(2)^3=8 y = 0 , t = 0 and at y = 2 , t = y 3 = ( 2 ) 3 = 8
= ∫ 0 8 s i n t 3 d t =\int_0^{8}\dfrac{sint}{3}dt = ∫ 0 8 3 s in t d t
= 1 3 [ − c o s t ] 0 8 =\dfrac{1}{3}[-cost]_0^{8} = 3 1 [ − cos t ] 0 8
= 1 3 ( c o s 0 − c o s 64 ) =\dfrac{1}{3}(cos0-cos64) = 3 1 ( cos 0 − cos 64 )
= 1 3 ( 1 − c o s 8 ) =\dfrac{1}{3}(1-cos8) = 3 1 ( 1 − cos 8 )
= 1 3 ( 1 − 0.964 ) =\dfrac{1}{3}(1-0.964) = 3 1 ( 1 − 0.964 )
= 0.036 3 = 0.012 sq. units \\=\dfrac{0.036}{3}\\=0.012 \text{ sq. units } = 3 0.036 = 0.012 sq. units
Comments