Question #166982
i) Find all points on the curve x(x + y2) = y where the tangent line is parallel to the x-axis.

ii) Find all points on the curve x(x + y2) = y where the tangent line is parallel to the y-axis
1
Expert's answer
2021-02-26T04:53:38-0500

i) Tangent line:

(yy0)=y(x0)(xx0)(y-y_0)=y'(x_0)(x-x_0)


y=x+y2+x(1+2yy)y'=x+y^2+x(1+2yy')

y=x+y2+x12xyy'=\frac{x+y^2+x}{1-2xy}


Line is parallel to the x-axis:

y=c=const    y=0y=c=const\implies y'=0


y=x+y2+x12xy=0y'=\frac{x+y^2+x}{1-2xy}=0


Tangent line is parallel to the x-axis if :

2x+y2=02x+y^2=0

2xy12xy\neq1


ii) Tangent line is parallel to the y-axis if :

yy'\to \infin

So we have:

2xy=12xy=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS