Consider the function y=3x2+24x−3
Differentiate the function y with respect to x as,
dxdy=dxd(3x2+24x−3)
=3(2x)+24(1)
=6x+24
Since, the slope of the tangent line is 6 , therefore,
dxdy=6
6x+24=6
6x+24−24=6−24
6x=−18
x=−3
At x=−3 , y=3(−3)2+24(−3)−3=−48
Comments
Leave a comment