Find the instantaneous rate of change of the function f(x) = x2 + 3x + 4 when x = 2 using First Principles. Confirm that your answer is correct using the derivative rules.
"Solution: ~\n\\\\Given: f(x)=x^2 +3x+4\n\\\\To ~Find :~derivative~At~ x=2~ by~ first ~ principle~and~ confirm ~ using~ \n\\\\derivative ~rules.\n\\\\ Solution: ~Since ~f(x)=x^2+3x+4\n\\\\ \\therefore f(x+h)=(x+h)^2 +3(x+h)+4\n\\\\~~~~~~~~~~~~~~~~~~~~=x^2+2xh+h^2+3x+3h+4\n\\\\Now~By~ first ~ principle~ we ~ know~that,\n\\\\f'(x)=\\lim_{h \\to 0} f(x) = \\frac{f(x+h)-f(x)}{h}\n\\\\ \\therefore f'(x)=\\lim_{h \\to 0} \\frac{(x^2+2xh+h^2+3x+3h+4)-(x^2+3x+4)}{h}\n\\\\~~~~~~~~~~~~~~=\\lim_{h \\to 0} \\frac{(x^2+2xh+h^2+3x+3h+4-x^2-3x-4)}{h}\n\\\\~~~~~~~~~~~~~~=\\lim_{h \\to 0} \\frac{2xh+h^2+3h}{h}\n\\\\~~~~~~~~~~~~~~=\\lim_{h \\to 0} \\frac{h(2x+h+3)}{h}\n\\\\~~~~~~~~~~~~~~=\\lim_{h \\to 0} 2x+h+3\n\\\\~~~~~~~~~~~~~~=2x+0+3\n\\\\~~~~~~~~~~~~~~=2x+3\n\\\\\\therefore f'(x)=2x+3\n\\\\at ~x=2,\n\\\\f'(2)=2(2)+3=4+3=7\n\\\\ \\therefore f'(x)=7\n\\\\By~using~derivative~rule~,\n\\\\we~know~that~f'(x)=\\frac{d}{dx}f(x)=\\frac{d}{dx}(x^n)=n.x^{n-1}~ and ~\\frac{d}{dx}f(x)=\\frac{d}{dx}(k)=0\n\\\\ \\therefore f'(x)=\\frac{d}{dx}f(x)=\\frac{d}{dx}(x^2 +3x+4)=\\frac{d}{dx}(x^2) +\\frac{d}{dx}(3x)+\\frac{d}{dx}(4)\n\\\\f'(x)=2x^{2-1}+3^{1-1}+0=2x+3\n\\\\Now, at ~x=2,\n\\\\f'(2)=2(2)+3=4+3=7\n\\\\ \\therefore f'(x)=7\n\\\\Hence~ the~ instantaneous ~rate~ of~ change~ of~ the ~ function~ f(x)~ at ~x=2 ~is~ 7."
Comments
Leave a comment