Solution: Given:f(x)=x2+3x+4To Find: derivative At x=2 by first principle and confirm using derivative rules.Solution: Since f(x)=x2+3x+4∴f(x+h)=(x+h)2+3(x+h)+4 =x2+2xh+h2+3x+3h+4Now By first principle we know that,f′(x)=limh→0f(x)=hf(x+h)−f(x)∴f′(x)=limh→0h(x2+2xh+h2+3x+3h+4)−(x2+3x+4) =limh→0h(x2+2xh+h2+3x+3h+4−x2−3x−4) =limh→0h2xh+h2+3h =limh→0hh(2x+h+3) =limh→02x+h+3 =2x+0+3 =2x+3∴f′(x)=2x+3at x=2,f′(2)=2(2)+3=4+3=7∴f′(x)=7By using derivative rule ,we know that f′(x)=dxdf(x)=dxd(xn)=n.xn−1 and dxdf(x)=dxd(k)=0∴f′(x)=dxdf(x)=dxd(x2+3x+4)=dxd(x2)+dxd(3x)+dxd(4)f′(x)=2x2−1+31−1+0=2x+3Now,at x=2,f′(2)=2(2)+3=4+3=7∴f′(x)=7Hence the instantaneous rate of change of the function f(x) at x=2 is 7.
Comments