Question #167023

Find the instantaneous rate of change of the function f(x) = x2 + 3x + 4 when x = 2 using First Principles. Confirm that your answer is correct using the derivative rules.


1
Expert's answer
2021-03-02T05:12:36-0500

Solution: Given:f(x)=x2+3x+4To Find: derivative At x=2 by first principle and confirm using derivative rules.Solution: Since f(x)=x2+3x+4f(x+h)=(x+h)2+3(x+h)+4                    =x2+2xh+h2+3x+3h+4Now By first principle we know that,f(x)=limh0f(x)=f(x+h)f(x)hf(x)=limh0(x2+2xh+h2+3x+3h+4)(x2+3x+4)h              =limh0(x2+2xh+h2+3x+3h+4x23x4)h              =limh02xh+h2+3hh              =limh0h(2x+h+3)h              =limh02x+h+3              =2x+0+3              =2x+3f(x)=2x+3at x=2,f(2)=2(2)+3=4+3=7f(x)=7By using derivative rule ,we know that f(x)=ddxf(x)=ddx(xn)=n.xn1 and ddxf(x)=ddx(k)=0f(x)=ddxf(x)=ddx(x2+3x+4)=ddx(x2)+ddx(3x)+ddx(4)f(x)=2x21+311+0=2x+3Now,at x=2,f(2)=2(2)+3=4+3=7f(x)=7Hence the instantaneous rate of change of the function f(x) at x=2 is 7.Solution: ~ \\Given: f(x)=x^2 +3x+4 \\To ~Find :~derivative~At~ x=2~ by~ first ~ principle~and~ confirm ~ using~ \\derivative ~rules. \\ Solution: ~Since ~f(x)=x^2+3x+4 \\ \therefore f(x+h)=(x+h)^2 +3(x+h)+4 \\~~~~~~~~~~~~~~~~~~~~=x^2+2xh+h^2+3x+3h+4 \\Now~By~ first ~ principle~ we ~ know~that, \\f'(x)=\lim_{h \to 0} f(x) = \frac{f(x+h)-f(x)}{h} \\ \therefore f'(x)=\lim_{h \to 0} \frac{(x^2+2xh+h^2+3x+3h+4)-(x^2+3x+4)}{h} \\~~~~~~~~~~~~~~=\lim_{h \to 0} \frac{(x^2+2xh+h^2+3x+3h+4-x^2-3x-4)}{h} \\~~~~~~~~~~~~~~=\lim_{h \to 0} \frac{2xh+h^2+3h}{h} \\~~~~~~~~~~~~~~=\lim_{h \to 0} \frac{h(2x+h+3)}{h} \\~~~~~~~~~~~~~~=\lim_{h \to 0} 2x+h+3 \\~~~~~~~~~~~~~~=2x+0+3 \\~~~~~~~~~~~~~~=2x+3 \\\therefore f'(x)=2x+3 \\at ~x=2, \\f'(2)=2(2)+3=4+3=7 \\ \therefore f'(x)=7 \\By~using~derivative~rule~, \\we~know~that~f'(x)=\frac{d}{dx}f(x)=\frac{d}{dx}(x^n)=n.x^{n-1}~ and ~\frac{d}{dx}f(x)=\frac{d}{dx}(k)=0 \\ \therefore f'(x)=\frac{d}{dx}f(x)=\frac{d}{dx}(x^2 +3x+4)=\frac{d}{dx}(x^2) +\frac{d}{dx}(3x)+\frac{d}{dx}(4) \\f'(x)=2x^{2-1}+3^{1-1}+0=2x+3 \\Now, at ~x=2, \\f'(2)=2(2)+3=4+3=7 \\ \therefore f'(x)=7 \\Hence~ the~ instantaneous ~rate~ of~ change~ of~ the ~ function~ f(x)~ at ~x=2 ~is~ 7.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS