The slope of the curve is given by d y d x = x 2 . x \frac{dy}{dx}=x^2.\sqrt{x} d x d y = x 2 . x .....(1)
Integrating both side of (1) with respect to x x x ,we get
∫ d y = ∫ x 2 . x d x \intop dy=\intop x^2.\sqrt{x} dx ∫ d y = ∫ x 2 . x d x
⟹ ∫ d y = ∫ x 5 2 d x \implies \intop dy=\intop x^{\frac{5}{2}} dx ⟹ ∫ d y = ∫ x 2 5 d x
⟹ y = x ( 5 2 + 1 ) 5 2 + 1 + C \implies y=\frac{x^{(\frac{5}{2}+1)}}{\frac{5}{2}+1}+C ⟹ y = 2 5 + 1 x ( 2 5 + 1 ) + C
⟹ y = 2 7 . x 7 2 + C \implies y=\frac{2}{7}.x^{\frac{7}{2}}+C ⟹ y = 7 2 . x 2 7 + C [where C C C is an integrating constant]
As the curve passes through the point ( 1 , 0 ) (1,0) ( 1 , 0 ) we have,
0 = 2 7 . 1 7 2 + C 0=\frac{2}{7}.1^{\frac{7}{2}}+C 0 = 7 2 . 1 2 7 + C
⟹ C = − 2 7 \implies C=-\frac{2}{7} ⟹ C = − 7 2
Therefore the required equation of the curve is y = 2 7 . x 7 2 − 2 7 y=\frac{2}{7}.x^{\frac{7}{2}}-\frac{2}{7} y = 7 2 . x 2 7 − 7 2
Comments