Acceleration a a a is given as
a = d v d t ⟹ d v = a d t ⟹ v = ∫ a d t a = \dfrac{dv}{dt} \implies dv = a\;dt \implies v = \int a\;dt a = d t d v ⟹ d v = a d t ⟹ v = ∫ a d t The function of the velocity (v v v ) is given as:
v = ∫ 4 t − 3 / 2 d t = 4 ∫ t − 3 / 2 d t = 4 ∫ 1 t 3 2 d t = 4 ( − 2 t ) v = − 8 t + c v =\int 4t^{-3/2} dt\\
= 4 \int t^{-3/2} dt\\
= 4\int \dfrac{1}{t^\frac{3}{2}} dt\\
= 4 \Bigg(-\dfrac{2}{\sqrt{t}}\Bigg)\\
v=-\dfrac{8}{\sqrt{t}} + c v = ∫ 4 t − 3/2 d t = 4 ∫ t − 3/2 d t = 4 ∫ t 2 3 1 d t = 4 ( − t 2 ) v = − t 8 + c Velocity (v v v ) is given as:
v = d s d t ⟹ d s = v d t ⟹ s = ∫ v d t v = \dfrac{ds}{dt} \implies ds = v\; dt \implies s = \int v\;dt v = d t d s ⟹ d s = v d t ⟹ s = ∫ v d t The function of the equation of motion can be obtained as follows:
s = ∫ ( − 8 t + c ) d t = − 8 ( 2 t ) + c t s = − 16 t + c t + c 1 s= \int \Big(-\dfrac{8}{\sqrt{t}} + c \Big) dt\\
= -8 (2\sqrt{t}) + ct\\
s = - 16\sqrt{t} + ct +c_1 s = ∫ ( − t 8 + c ) d t = − 8 ( 2 t ) + c t s = − 16 t + c t + c 1
When s = 16 and t = 4:
16 = − 16 ( 4 ) + c ( 4 ) + c 1 = − 16 ( 2 ) + 4 c + c 1 16 = − 32 + 4 c + c 1 ⟹ 4 c + c 1 = 48 … ( e q n 1 ) 16 = -16(\sqrt{4})+c(4) + c_1\\
= -16(2) + 4c + c_1\\
16= -32 +4c +c_1\\
\implies 4c+c_1 = 48 \qquad\dots (eqn\;1) 16 = − 16 ( 4 ) + c ( 4 ) + c 1 = − 16 ( 2 ) + 4 c + c 1 16 = − 32 + 4 c + c 1 ⟹ 4 c + c 1 = 48 … ( e q n 1 )
When s = 25 and t = 6:
25 = − 16 ( 6 ) + c ( 6 ) + c 1 = − 16 ( 6 ) + 6 c + c 1 25 = − 16 ( 2.45 ) + 6 c + c 1 6 c + c 1 = 25 + 39.2 ⟹ 6 c + c 1 = 64.2 … ( e q n 2 ) 25 = -16(\sqrt{6})+c(6) + c_1\\
= -16(\sqrt{6}) + 6c + c_1\\
25= -16(2.45) +6c +c_1\\
6c+c_1 = 25+39.2 \\
\implies 6c+c_1 = 64.2 \qquad\dots (eqn\;2) 25 = − 16 ( 6 ) + c ( 6 ) + c 1 = − 16 ( 6 ) + 6 c + c 1 25 = − 16 ( 2.45 ) + 6 c + c 1 6 c + c 1 = 25 + 39.2 ⟹ 6 c + c 1 = 64.2 … ( e q n 2 )
Solving eqn 1 and eqn 2 simultaneously:
4 c + c 1 = 48 ( − ) 6 c + c 1 = 64.2 − − − − − − − − − − 2 c = − 16.2 c = 8.1 \quad4c+c_1=48\\
(-) 6c+c1=64.2\\
---------\\
-2c=-16.2\\
c= 8.1 4 c + c 1 = 48 ( − ) 6 c + c 1 = 64.2 − − − − − − − − − − 2 c = − 16.2 c = 8.1 Hence we find c 1 c_1 c 1 :
4 ( 8.1 ) + c 1 = 48 32.4 + c 1 = 48 c 1 = 48 − 32.4 c 1 = 15.6 4(8.1) +c_1 = 48\\
32.4 +c_1 = 48\\
c_1 = 48 -32.4\\
c_1=15.6 4 ( 8.1 ) + c 1 = 48 32.4 + c 1 = 48 c 1 = 48 − 32.4 c 1 = 15.6 Therefore, the equation of the motion s = f ( t ) s = f(t) s = f ( t ) is:
s = f ( t ) = − 16 t + 8.1 t + 15.6 s=f(t)=-16\sqrt{t}+8.1t+15.6 s = f ( t ) = − 16 t + 8.1 t + 15.6
The velocity v ( t ) v(t) v ( t ) is:
v ( t ) = − 8 t + 8.1 v(t) = -\dfrac{8}{\sqrt{t}} + 8.1 v ( t ) = − t 8 + 8.1
Comments
Dear Meep Melphy, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you.