Question #167393

The points (-1,3) and (0,2) are on a curve, and at any point (x,y) on the curve 𝑑 2𝑦 𝑑𝑥 2 = 2 − 4𝑥. Find an equation of the curve. 


1
Expert's answer
2021-03-01T07:11:06-0500
d2ydx2=24xd2y=(24x)dx2d(dy)=[(24x)dx]dxd(dy)=[(24x)dx]dxdy=(2x2x2+c1)dxdy=(2x2x2+c1)dx\dfrac{d^2y}{dx^2} = 2-4x\\ d^2y =(2-4x)dx^2\\ d(dy) = [(2-4x)dx]dx\\ \int d(dy) = \int[(2-4x)dx]dx\\ dy = (2x - 2x^2 +c_1)dx\\ \int dy = \int(2x - 2x^2 +c_1)dx\\

The general solution of the curve is given as:


y=x22x33+c1x+c2{y =x^2-\frac{2x^3}{3}+c_1x + c_2}

at point (-1,3):


3=(1)22(1)33+c1(1)+c23=1+23c1+c23123=c1+c2    43=c1+c23 = (-1)^2 - \frac{2(-1)^3}{3} +c_1(-1) + c_2\\ 3 = 1 + \frac{2}{3} - c_1+c_2\\ 3-1-\frac{2}{3} = -c_1+c_2 \implies \frac{4}{3} = -c_1+c_2

At point (0,2):


2=(0)22(0)33+c1(0)+c2    c2=22 = (0)^2 - \frac{2(0)^3}{3} +c_1(0) + c_2\\ \implies c_2=2

Substitute for c2c_2 in the previous equation:


43=c1+2c1=243c1=23\frac{4}{3} = -c_1+2\\ c_1 = 2 - \frac{4}{3}\\ c_1 = \frac{2}{3}

\therefore the equation of the curve is:


y=x22x33+2x3+2    y=2+2x3+x22x33y =x^2-\frac{2x^3}{3}+\frac{2x}{3} + 2 \implies y =2+\frac{2x}{3}+x^2-\frac{2x^3}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS