dx2d2y=2−4xd2y=(2−4x)dx2d(dy)=[(2−4x)dx]dx∫d(dy)=∫[(2−4x)dx]dxdy=(2x−2x2+c1)dx∫dy=∫(2x−2x2+c1)dx
The general solution of the curve is given as:
y=x2−32x3+c1x+c2
at point (-1,3):
3=(−1)2−32(−1)3+c1(−1)+c23=1+32−c1+c23−1−32=−c1+c2⟹34=−c1+c2
At point (0,2):
2=(0)2−32(0)3+c1(0)+c2⟹c2=2
Substitute for c2 in the previous equation:
34=−c1+2c1=2−34c1=32 ∴ the equation of the curve is:
y=x2−32x3+32x+2⟹y=2+32x+x2−32x3
Comments