Question #167809

Evaluate the integral of z tan z² dz


1
Expert's answer
2021-03-07T09:47:30-0500

I=z(tanz2)dzI= \int z(tanz^2) dz


Let z2=t2zdz=dtz^2=t\Rightarrow 2zdz=dt\\

zdz=dt2\Rightarrow zdz=\dfrac{dt}{2}

Now, I=tan(t)×dt2I= \int tan(t)\times \dfrac{dt}{2}

I=12tan(t)dt\Rightarrow I=\dfrac{1}{2}\int tan(t)dt

I=12×lnsec(t)+C\Rightarrow I= \dfrac{1}{2}\times ln|sec(t)|+C


I=12\Rightarrow I= \dfrac{1}{2} lnsec(z2)+Cln |sec(z^2)|+C


ztan(z2)dz=lnsec(z2)2+C\int ztan(z^2)dz=\dfrac{ln|sec(z^2)|}{2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS