Evaluate the integral of z tan z² dz
I=∫z(tanz2)dzI= \int z(tanz^2) dzI=∫z(tanz2)dz
Let z2=t⇒2zdz=dtz^2=t\Rightarrow 2zdz=dt\\z2=t⇒2zdz=dt
⇒zdz=dt2\Rightarrow zdz=\dfrac{dt}{2}⇒zdz=2dt
Now, I=∫tan(t)×dt2I= \int tan(t)\times \dfrac{dt}{2}I=∫tan(t)×2dt
⇒I=12∫tan(t)dt\Rightarrow I=\dfrac{1}{2}\int tan(t)dt⇒I=21∫tan(t)dt
⇒I=12×ln∣sec(t)∣+C\Rightarrow I= \dfrac{1}{2}\times ln|sec(t)|+C⇒I=21×ln∣sec(t)∣+C
⇒I=12\Rightarrow I= \dfrac{1}{2}⇒I=21 ln∣sec(z2)∣+Cln |sec(z^2)|+Cln∣sec(z2)∣+C
∫ztan(z2)dz=ln∣sec(z2)∣2+C\int ztan(z^2)dz=\dfrac{ln|sec(z^2)|}{2}+C∫ztan(z2)dz=2ln∣sec(z2)∣+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments