Evaluate the integral of sec 5θ tan 5θ dθ
Let us evaluate the integral of ∫sec5θtan5θdθ:\int \sec 5θ \tan 5θ dθ:∫sec5θtan5θdθ:
∫sec5θtan5θdθ=∫1cos5θsin5θcos5θdθ=−15∫1cos25θd(cos5θ)=−15∫cos−25θd(cos5θ)=15 cos−15θ+C=15cos5θ+C\int \sec 5θ \tan 5θ dθ=\int \frac{1}{\cos 5θ}\frac{ \sin 5θ}{\cos 5θ} dθ= -\frac{1}{5}\int \frac{1}{\cos^2 5θ} d(\cos 5θ)= -\frac{1}{5}\int \cos^{-2} 5θ d(\cos 5θ)= \frac{1}{5}\ \cos^{-1} 5θ + C=\frac{1}{5\cos 5θ}+C∫sec5θtan5θdθ=∫cos5θ1cos5θsin5θdθ=−51∫cos25θ1d(cos5θ)=−51∫cos−25θd(cos5θ)=51 cos−15θ+C=5cos5θ1+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments