Question #167802

Evaluate the integral of sec 5θ tan 5θ dθ


1
Expert's answer
2021-03-10T11:20:01-0500

Let us evaluate the integral of sec5θtan5θdθ:\int \sec 5θ \tan 5θ dθ:


sec5θtan5θdθ=1cos5θsin5θcos5θdθ=151cos25θd(cos5θ)=15cos25θd(cos5θ)=15 cos15θ+C=15cos5θ+C\int \sec 5θ \tan 5θ dθ=\int \frac{1}{\cos 5θ}\frac{ \sin 5θ}{\cos 5θ} dθ= -\frac{1}{5}\int \frac{1}{\cos^2 5θ} d(\cos 5θ)= -\frac{1}{5}\int \cos^{-2} 5θ d(\cos 5θ)= \frac{1}{5}\ \cos^{-1} 5θ + C=\frac{1}{5\cos 5θ}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS