Evaluate the integral of Csc² (2-3x) dx
Solution:
I=∫csc2(2−3x)dxI=\int \csc^2 (2-3x)dxI=∫csc2(2−3x)dx ...(i)
Put 2−3x=t2-3x=t2−3x=t
⇒0−3=dtdx\Rightarrow 0-3=\dfrac{dt}{dx}⇒0−3=dxdt [On differentiating]
⇒dx=−dt3\Rightarrow dx=-\dfrac{dt}{3}⇒dx=−3dt
Putting these values in (i), we get
⇒I=13∫(−csc2t)dt\Rightarrow I=\dfrac13\int(- \csc^2 t)dt⇒I=31∫(−csc2t)dt
⇒I=13cott+C\Rightarrow I=\dfrac13\cot t+C⇒I=31cott+C
⇒I=13cot(2−3x)+C\Rightarrow I=\dfrac13\cot (2-3x)+C⇒I=31cot(2−3x)+C [Substituting value of ttt back]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment