Question #167814

Evaluate the integral of (√tan x )sec⁴ x dx


1
Expert's answer
2021-03-10T04:43:53-0500

Solution:Let I=(tan x)sec4x dx       I=(tan x)sec2x sec2x dx       I=(tan x)(1+tan2x) sec2x dx       I=[(tan x)sec2x(1+tan2x)] dx       I=[(tan x) sec2x+(tan x) sec2x tan2x] dx       I=[(tan x) sec2x+(tan x) tan2x sec2x] dx       I=(tan x) sec2x dx+(tan x)  tan2x sec2x dxLet u=tan xdu=sec2x dx        I=(u) du+(u)  u2 du           =u12 du+u12 u2 du           =u12 du+u52 duI=u12+112+1+u52+152+1+C    I=u3232+u7272+C    I=23u32+27u72+CNow back substitute u=tan x(tan x)sec4x dx=23 tan32x+27 tan72x+CSolution: \\Let ~I=\int(\sqrt {tan~ x}) sec^4 x ~dx \\~~~~~~~I=\int(\sqrt {tan~ x}) sec^2 x ~sec^2 x ~dx \\~~~~~~~I=\int(\sqrt {tan ~x}) (1+tan^2 x) ~sec^2 x ~dx \\~~~~~~~I=\int[(\sqrt {tan~ x})sec^2 x (1+tan^2 x) ] ~dx \\~~~~~~~I=\int[(\sqrt {tan ~x} )~sec^2 x +(\sqrt {tan~ x} )~sec^2 x~tan^2 x] ~dx \\~~~~~~~I=\int[(\sqrt {tan~ x} )~sec^2 x +(\sqrt {tan ~x} )~tan^2 x~sec^2 x] ~dx \\~~~~~~~I=\int(\sqrt {tan~ x} )~sec^2 x~dx +\int(\sqrt {tan ~x} )~~tan^2 x~sec^2 x ~dx \\Let ~u= tan ~x \Rightarrow du=sec^2 x~dx \\~~~~~~~~I=\int(\sqrt {u} )~du +\int(\sqrt {u} )~~u^2~du \\~~~~~~~~~~~=\int u^{\frac{1}{2}} ~du +\int u^{\frac{1}{2}} ~u^2 ~du \\~~~~~~~~~~~=\int u^{\frac{1}{2}} ~du +\int u^{\frac{5}{2}}~du \\ \therefore I= \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{u^{\frac{5}{2}+1}}{\frac{5}{2}+1}+C \\ ~~~~I= \frac{u^{\frac{3}{2}}}{\frac{3}{2}}+\frac{u^{\frac{7}{2}}}{\frac{7}{2}}+C \\~~~~I=\frac{2}{3}u^{\frac{3}{2}}+\frac{2}{7}u^{\frac{7}{2}}+C \\ Now ~ back ~substitute~u=tan ~x \\ \therefore \int(\sqrt {tan~ x}) sec^4 x ~dx=\frac{2}{3}~tan^{\frac{3}{2}} x+\frac{2}{7}~tan^{\frac{7}{2}} x+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS