Solution:Let I=∫(tan x)sec4x dx I=∫(tan x)sec2x sec2x dx I=∫(tan x)(1+tan2x) sec2x dx I=∫[(tan x)sec2x(1+tan2x)] dx I=∫[(tan x) sec2x+(tan x) sec2x tan2x] dx I=∫[(tan x) sec2x+(tan x) tan2x sec2x] dx I=∫(tan x) sec2x dx+∫(tan x) tan2x sec2x dxLet u=tan x⇒du=sec2x dx I=∫(u) du+∫(u) u2 du =∫u21 du+∫u21 u2 du =∫u21 du+∫u25 du∴I=21+1u21+1+25+1u25+1+C I=23u23+27u27+C I=32u23+72u27+CNow back substitute u=tan x∴∫(tan x)sec4x dx=32 tan23x+72 tan27x+C
Comments