S o l u t i o n : L e t I = ∫ ( t a n x ) s e c 4 x d x I = ∫ ( t a n x ) s e c 2 x s e c 2 x d x I = ∫ ( t a n x ) ( 1 + t a n 2 x ) s e c 2 x d x I = ∫ [ ( t a n x ) s e c 2 x ( 1 + t a n 2 x ) ] d x I = ∫ [ ( t a n x ) s e c 2 x + ( t a n x ) s e c 2 x t a n 2 x ] d x I = ∫ [ ( t a n x ) s e c 2 x + ( t a n x ) t a n 2 x s e c 2 x ] d x I = ∫ ( t a n x ) s e c 2 x d x + ∫ ( t a n x ) t a n 2 x s e c 2 x d x L e t u = t a n x ⇒ d u = s e c 2 x d x I = ∫ ( u ) d u + ∫ ( u ) u 2 d u = ∫ u 1 2 d u + ∫ u 1 2 u 2 d u = ∫ u 1 2 d u + ∫ u 5 2 d u ∴ I = u 1 2 + 1 1 2 + 1 + u 5 2 + 1 5 2 + 1 + C I = u 3 2 3 2 + u 7 2 7 2 + C I = 2 3 u 3 2 + 2 7 u 7 2 + C N o w b a c k s u b s t i t u t e u = t a n x ∴ ∫ ( t a n x ) s e c 4 x d x = 2 3 t a n 3 2 x + 2 7 t a n 7 2 x + C Solution:
\\Let ~I=\int(\sqrt {tan~ x}) sec^4 x ~dx
\\~~~~~~~I=\int(\sqrt {tan~ x}) sec^2 x ~sec^2 x ~dx
\\~~~~~~~I=\int(\sqrt {tan ~x}) (1+tan^2 x) ~sec^2 x ~dx
\\~~~~~~~I=\int[(\sqrt {tan~ x})sec^2 x (1+tan^2 x) ] ~dx
\\~~~~~~~I=\int[(\sqrt {tan ~x} )~sec^2 x +(\sqrt {tan~ x} )~sec^2 x~tan^2 x] ~dx
\\~~~~~~~I=\int[(\sqrt {tan~ x} )~sec^2 x +(\sqrt {tan ~x} )~tan^2 x~sec^2 x] ~dx
\\~~~~~~~I=\int(\sqrt {tan~ x} )~sec^2 x~dx +\int(\sqrt {tan ~x} )~~tan^2 x~sec^2 x ~dx
\\Let ~u= tan ~x \Rightarrow du=sec^2 x~dx
\\~~~~~~~~I=\int(\sqrt {u} )~du +\int(\sqrt {u} )~~u^2~du
\\~~~~~~~~~~~=\int u^{\frac{1}{2}} ~du +\int u^{\frac{1}{2}} ~u^2 ~du
\\~~~~~~~~~~~=\int u^{\frac{1}{2}} ~du +\int u^{\frac{5}{2}}~du
\\ \therefore I= \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{u^{\frac{5}{2}+1}}{\frac{5}{2}+1}+C
\\ ~~~~I= \frac{u^{\frac{3}{2}}}{\frac{3}{2}}+\frac{u^{\frac{7}{2}}}{\frac{7}{2}}+C
\\~~~~I=\frac{2}{3}u^{\frac{3}{2}}+\frac{2}{7}u^{\frac{7}{2}}+C
\\ Now ~ back ~substitute~u=tan ~x
\\ \therefore \int(\sqrt {tan~ x}) sec^4 x ~dx=\frac{2}{3}~tan^{\frac{3}{2}} x+\frac{2}{7}~tan^{\frac{7}{2}} x+C S o l u t i o n : L e t I = ∫ ( t an x ) se c 4 x d x I = ∫ ( t an x ) se c 2 x se c 2 x d x I = ∫ ( t an x ) ( 1 + t a n 2 x ) se c 2 x d x I = ∫ [( t an x ) se c 2 x ( 1 + t a n 2 x )] d x I = ∫ [( t an x ) se c 2 x + ( t an x ) se c 2 x t a n 2 x ] d x I = ∫ [( t an x ) se c 2 x + ( t an x ) t a n 2 x se c 2 x ] d x I = ∫ ( t an x ) se c 2 x d x + ∫ ( t an x ) t a n 2 x se c 2 x d x L e t u = t an x ⇒ d u = se c 2 x d x I = ∫ ( u ) d u + ∫ ( u ) u 2 d u = ∫ u 2 1 d u + ∫ u 2 1 u 2 d u = ∫ u 2 1 d u + ∫ u 2 5 d u ∴ I = 2 1 + 1 u 2 1 + 1 + 2 5 + 1 u 2 5 + 1 + C I = 2 3 u 2 3 + 2 7 u 2 7 + C I = 3 2 u 2 3 + 7 2 u 2 7 + C N o w ba c k s u b s t i t u t e u = t an x ∴ ∫ ( t an x ) se c 4 x d x = 3 2 t a n 2 3 x + 7 2 t a n 2 7 x + C
Comments