Find f' in terms of g' of f(x)=g(x)(x-a)
Solution:
Given, f(x)=g(x)(x−a)f(x)=g(x)(x-a)f(x)=g(x)(x−a)
On differentiating both sides w.r.t xxx ,
f′(x)=[g(x)]′(x−a)+g(x)(x−a)′f'(x)=[g(x)]'(x-a)+g(x)(x-a)'f′(x)=[g(x)]′(x−a)+g(x)(x−a)′ [Using product rule]
⇒f′(x)=g′(x)(x−a)+g(x)(1−0)\Rightarrow f'(x)=g'(x)(x-a)+g(x)(1-0)⇒f′(x)=g′(x)(x−a)+g(x)(1−0)
⇒f′(x)=g′(x)(x−a)+g(x)\Rightarrow f'(x)=g'(x)(x-a)+g(x)⇒f′(x)=g′(x)(x−a)+g(x)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments