Question #167815

Evaluate the integral of 1/y² Cos (1/y) dy 


1
Expert's answer
2021-03-10T07:08:18-0500

Evaluate the integral

1y2cos(1y)dy\displaystyle\int\dfrac{1}{y^2}\cos \left(\frac{1}{y}\right) dy


Note that


d(1y)=(1y)dy=1y2dyd\left(\dfrac{1}{y}\right)=\left(\dfrac{1}{y}\right)'dy=-\dfrac{1}{y^2}dy


Then


1y2cos(1y)dy=\displaystyle\int\dfrac{1}{y^2}\cdot\cos \left(\frac{1}{y}\right) dy =


cos(1y)1y2dy=\displaystyle\int\cos \left(\frac{1}{y}\right)\cdot\dfrac{1}{y^2} dy =


cos(1y)(1y2)dy=-\displaystyle\int\cos \left(\frac{1}{y}\right)\cdot\left(-\dfrac{1}{y^2}\right) dy =


cos(1y)d(1y)=-\displaystyle\int\cos \left(\frac{1}{y}\right)d\left(\dfrac{1}{y}\right) =


sin(1y)+C-\sin \left(\dfrac{1}{y}\right)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS