Evaluate the integral of 1/y² Cos (1/y) dy
Evaluate the integral
∫1y2cos(1y)dy\displaystyle\int\dfrac{1}{y^2}\cos \left(\frac{1}{y}\right) dy∫y21cos(y1)dy
Note that
d(1y)=(1y)′dy=−1y2dyd\left(\dfrac{1}{y}\right)=\left(\dfrac{1}{y}\right)'dy=-\dfrac{1}{y^2}dyd(y1)=(y1)′dy=−y21dy
Then
∫1y2⋅cos(1y)dy=\displaystyle\int\dfrac{1}{y^2}\cdot\cos \left(\frac{1}{y}\right) dy =∫y21⋅cos(y1)dy=
∫cos(1y)⋅1y2dy=\displaystyle\int\cos \left(\frac{1}{y}\right)\cdot\dfrac{1}{y^2} dy =∫cos(y1)⋅y21dy=
−∫cos(1y)⋅(−1y2)dy=-\displaystyle\int\cos \left(\frac{1}{y}\right)\cdot\left(-\dfrac{1}{y^2}\right) dy =−∫cos(y1)⋅(−y21)dy=
−∫cos(1y)d(1y)=-\displaystyle\int\cos \left(\frac{1}{y}\right)d\left(\dfrac{1}{y}\right) =−∫cos(y1)d(y1)=
−sin(1y)+C-\sin \left(\dfrac{1}{y}\right)+C−sin(y1)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments