Find f'(x) of [sinx².sin²x]/(1 + sinx)
.
"\\frac{d}{dx}\\left(\\frac{\\left[sinx\u00b2.\\:sin\u00b2x\\right]}{\\left[1+sinx\\right]}\\right)"
Apply the quotient rule
"\\left(\\frac{f}{g}\\right)'=\\frac{ f' \\cdot g-g'\\cdot f}{g^2}"
"=\\frac{\\frac{d}{dx}\\left(\\sin \\left(x^2\\right)\\sin ^2\\left(x\\right)\\right)\\left(1+\\sin \\left(x\\right)\\right)-\\frac{d}{dx}\\left(1+\\sin \\left(x\\right)\\right)\\sin \\left(x^2\\right)\\sin ^2\\left(x\\right)}{\\left(1+\\sin \\left(x\\right)\\right)^2}"
"= \\frac{\\left(\\cos \\left(x^2\\right)\\cdot \\:2x\\sin ^2\\left(x\\right)+\\sin \\left(2x\\right)\\sin \\left(x^2\\right)\\right)\\left(1+\\sin \\left(x\\right)\\right)-\\cos \\left(x\\right)\\sin \\left(x^2\\right)\\sin ^2\\left(x\\right)}{\\left(1+\\sin \\left(x\\right)\\right)^2}"
Comments
Leave a comment