Find f'(x) of f(x)= sin[(sin⁷x⁷ + 1)⁷]
Let us find f′(x)f'(x)f′(x) of f(x)=sin[(sin7x7+1)7]f(x)= \sin[(\sin^7x^7 + 1)^7]f(x)=sin[(sin7x7+1)7]
f′(x)=cos[(sin7x7+1)7]⋅7(sin7x7+1)6⋅7sin6x7⋅cosx7⋅7x6=243x6cos[(sin7x7+1)7]⋅(sin7x7+1)6⋅sin6x7⋅cosx7f'(x)= \cos[(\sin^7x^7 + 1)^7]\cdot 7(\sin^7x^7 + 1)^6\cdot7\sin^6x^7\cdot \cos x^7\cdot 7x^6=243x^6 \cos[(\sin^7x^7 + 1)^7]\cdot (\sin^7x^7 + 1)^6\cdot\sin^6x^7\cdot \cos x^7f′(x)=cos[(sin7x7+1)7]⋅7(sin7x7+1)6⋅7sin6x7⋅cosx7⋅7x6=243x6cos[(sin7x7+1)7]⋅(sin7x7+1)6⋅sin6x7⋅cosx7
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment