SOLUTION
"\\smallint_0^{\\frac{\\pi}{3}}\\int_0^y\\int _0^x cos(x+y+z) dzdxdy"
We first consider the inner integral
"=" "\\smallint_0^{\\frac{\\pi}{3}}\\int_0^y [\\int _0^x cos(x+y+z) dz]dxdy"
"=\\smallint_0^{\\frac{\\pi}{3}}\\int_0^y [ sin(x+y+z)]_0^x dxdy"
"=\\smallint_0^{\\frac{\\pi}{3}}\\int_0^y [ sin(x+y+x) - sin(x+y+0)] dxdy"
"=\\smallint_0^{\\frac{\\pi}{3}}\\int_0^y [ sin(2x+y) - sin(x+y)] dxdy"
Now we proceed to the middle integral;
"=\\smallint_0^{\\frac{\\pi}{3}}[\\int_0^y ( sin(2x+y) - sin(x+y)) dx]dy"
"=\\smallint_0^{\\frac{\\pi}{3}}[ [ cos(x+y) - \\frac{cos(2x+y)}{2}]_0^y]dy"
"=\\smallint_0^{\\frac{\\pi}{3}}[ \\frac{-cos(3y)-2cos(2y)+cos(y)}{2}]dy"
And now taking the outer integral, we have;
"\\smallint_0^{\\frac{\\pi}{3}}[ \\frac{-cos(3y)-2cos(2y)+cos(y)}{2}]dy"
"=[ \\frac{- \\frac{sin(3y)}{3}+sin(2y)-sin(y) }{2}]_0^{\\frac{\\pi}{3}}"
"=[ \\frac{- \\frac{sin(\\pi)}{3}+sin(\\frac{2}{3}\\pi)-sin(\\frac{\\pi}{3}) }{2} - (\\frac{- \\frac{sin(0)}{3}+sin(0)-sin(0) }{2})]"
"=[ \\frac{- 0+0.866-0.866 }{2} - 0)]"
"=0-0"
"=0"
Comments
Leave a comment