SOLUTION
∫03π∫0y∫0xcos(x+y+z)dzdxdy
We first consider the inner integral
= ∫03π∫0y[∫0xcos(x+y+z)dz]dxdy
=∫03π∫0y[sin(x+y+z)]0xdxdy
=∫03π∫0y[sin(x+y+x)−sin(x+y+0)]dxdy
=∫03π∫0y[sin(2x+y)−sin(x+y)]dxdy
Now we proceed to the middle integral;
=∫03π[∫0y(sin(2x+y)−sin(x+y))dx]dy
=∫03π[[cos(x+y)−2cos(2x+y)]0y]dy
=∫03π[2−cos(3y)−2cos(2y)+cos(y)]dy
And now taking the outer integral, we have;
∫03π[2−cos(3y)−2cos(2y)+cos(y)]dy
=[2−3sin(3y)+sin(2y)−sin(y)]03π
=[2−3sin(π)+sin(32π)−sin(3π)−(2−3sin(0)+sin(0)−sin(0))]
=[2−0+0.866−0.866−0)]
=0−0
=0
Comments