Question #142093
Evaluate the iterated integral ∫(0 to π/3)∫(0 to y)∫(0 to x) cos(x+y+z) dzdxdy.
1
Expert's answer
2020-11-09T20:44:06-0500

SOLUTION


0π30y0xcos(x+y+z)dzdxdy\smallint_0^{\frac{\pi}{3}}\int_0^y\int _0^x cos(x+y+z) dzdxdy


We first consider the inner integral


== 0π30y[0xcos(x+y+z)dz]dxdy\smallint_0^{\frac{\pi}{3}}\int_0^y [\int _0^x cos(x+y+z) dz]dxdy


=0π30y[sin(x+y+z)]0xdxdy=\smallint_0^{\frac{\pi}{3}}\int_0^y [ sin(x+y+z)]_0^x dxdy


=0π30y[sin(x+y+x)sin(x+y+0)]dxdy=\smallint_0^{\frac{\pi}{3}}\int_0^y [ sin(x+y+x) - sin(x+y+0)] dxdy


=0π30y[sin(2x+y)sin(x+y)]dxdy=\smallint_0^{\frac{\pi}{3}}\int_0^y [ sin(2x+y) - sin(x+y)] dxdy


Now we proceed to the middle integral;


=0π3[0y(sin(2x+y)sin(x+y))dx]dy=\smallint_0^{\frac{\pi}{3}}[\int_0^y ( sin(2x+y) - sin(x+y)) dx]dy


=0π3[[cos(x+y)cos(2x+y)2]0y]dy=\smallint_0^{\frac{\pi}{3}}[ [ cos(x+y) - \frac{cos(2x+y)}{2}]_0^y]dy


=0π3[cos(3y)2cos(2y)+cos(y)2]dy=\smallint_0^{\frac{\pi}{3}}[ \frac{-cos(3y)-2cos(2y)+cos(y)}{2}]dy


And now taking the outer integral, we have;


0π3[cos(3y)2cos(2y)+cos(y)2]dy\smallint_0^{\frac{\pi}{3}}[ \frac{-cos(3y)-2cos(2y)+cos(y)}{2}]dy


=[sin(3y)3+sin(2y)sin(y)2]0π3=[ \frac{- \frac{sin(3y)}{3}+sin(2y)-sin(y) }{2}]_0^{\frac{\pi}{3}}


=[sin(π)3+sin(23π)sin(π3)2(sin(0)3+sin(0)sin(0)2)]=[ \frac{- \frac{sin(\pi)}{3}+sin(\frac{2}{3}\pi)-sin(\frac{\pi}{3}) }{2} - (\frac{- \frac{sin(0)}{3}+sin(0)-sin(0) }{2})]


=[0+0.8660.86620)]=[ \frac{- 0+0.866-0.866 }{2} - 0)]


=00=0-0


=0=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS