"V = \\iiint dV = \\int_0^1 \\int_{x^2}^{\\sqrt x} \\int_0^{x+y+15}dzdydx \\\\\n= \\int_0^1 \\int_{x^2}^{\\sqrt x} x + y+15 dydx \\\\\n= \\int_0^1 \\Big[xy + 1\/2y^2 + 15y\\Big]_{x^2}^{\\sqrt x} dx \\\\\n= \\int_0^1 x\\sqrt x + 1\/2x+ 15\\sqrt x - x^3 - 1\/2x^4 - 15x^2 dx \\\\\n= 2\/5x^{5\/2} + 1\/4 x^2 + 10x^{3\/2} - 1\/4x^4 - 1\/10x^5 - 5x^3\\Big|_0^1 \\\\\n= 2\/5 + 1\/4 + 10 - 1\/4 - 1\/10 - 5 = 5.3"
Comments
Leave a comment