"\\iiint_E xy dV" , where "E = \\{x > 0,y>0,z>0, 5x+y+10z = 10\\}"
So we have:
"x\\in[0;2]\\\\y\\in[0;10-5x]\\\\z\\in[0;1-\\frac{x}{2}-\\frac{y}{10}]"
"\\iiint_E xy dV =\\int_0^2dx\\int_0^{10-5x}dy\\int_0^{1-\\frac{x}{2}-\\frac{y}{10}}xydz= \\\\=\n\\int_0^2dx\\int_0^{10-5x}(xy - \\frac{x^2y}{2} - \\frac{xy^2}{10})dy=\\\\=\n\\int_0^2dx(\\frac{xy^2}{2} - \\frac{x^2y^2}{4} - \\frac{xy^3}{30}|_0^{10-5x}) =\\\\=\n\\int_0^2(10-5x)^2(\\frac{x}{2} - \\frac{x^2}{4} - \\frac{10x-5x^2}{30})dx =\\\\=\n\\int_0^2(100-100x+25x^2)(\\cfrac{-5x^2 + 10x}{60})dx =\\\\=\n\\int_0^2(\\cfrac{-125x^2+750x^3-1500x^2 + 1000x}{60})dx=\\\\=\n(-\\cfrac{25x^5}{60} + \\cfrac{750x^4}{240} -\\cfrac{500x^3}{60} + \\cfrac{500x^2}{60})|_0^2=\\\\=\n\\cfrac{-800 -4000+2000}{60} +\\cfrac{12000}{240} = \\cfrac{3000+2000-4000-800}{60}= \\cfrac{10}{3}"
Comments
Leave a comment