∭ExydV , where E={x>0,y>0,z>0,5x+y+10z=10}
So we have:
x∈[0;2]y∈[0;10−5x]z∈[0;1−2x−10y]
∭ExydV=∫02dx∫010−5xdy∫01−2x−10yxydz==∫02dx∫010−5x(xy−2x2y−10xy2)dy==∫02dx(2xy2−4x2y2−30xy3∣010−5x)==∫02(10−5x)2(2x−4x2−3010x−5x2)dx==∫02(100−100x+25x2)(60−5x2+10x)dx==∫02(60−125x2+750x3−1500x2+1000x)dx==(−6025x5+240750x4−60500x3+60500x2)∣02==60−800−4000+2000+24012000=603000+2000−4000−800=310
Comments