Question #142088
Evaluate the triple integral ∭E xy dV where E is the solid tetrahedon with vertices (0,0,0),(2,0,0),(0,10,0),(0,0,1).
1
Expert's answer
2020-11-09T11:09:48-0500

ExydV\iiint_E xy dV , where E={x>0,y>0,z>0,5x+y+10z=10}E = \{x > 0,y>0,z>0, 5x+y+10z = 10\}

So we have:

x[0;2]y[0;105x]z[0;1x2y10]x\in[0;2]\\y\in[0;10-5x]\\z\in[0;1-\frac{x}{2}-\frac{y}{10}]

ExydV=02dx0105xdy01x2y10xydz==02dx0105x(xyx2y2xy210)dy==02dx(xy22x2y24xy3300105x)==02(105x)2(x2x2410x5x230)dx==02(100100x+25x2)(5x2+10x60)dx==02(125x2+750x31500x2+1000x60)dx==(25x560+750x4240500x360+500x260)02==8004000+200060+12000240=3000+2000400080060=103\iiint_E xy dV =\int_0^2dx\int_0^{10-5x}dy\int_0^{1-\frac{x}{2}-\frac{y}{10}}xydz= \\= \int_0^2dx\int_0^{10-5x}(xy - \frac{x^2y}{2} - \frac{xy^2}{10})dy=\\= \int_0^2dx(\frac{xy^2}{2} - \frac{x^2y^2}{4} - \frac{xy^3}{30}|_0^{10-5x}) =\\= \int_0^2(10-5x)^2(\frac{x}{2} - \frac{x^2}{4} - \frac{10x-5x^2}{30})dx =\\= \int_0^2(100-100x+25x^2)(\cfrac{-5x^2 + 10x}{60})dx =\\= \int_0^2(\cfrac{-125x^2+750x^3-1500x^2 + 1000x}{60})dx=\\= (-\cfrac{25x^5}{60} + \cfrac{750x^4}{240} -\cfrac{500x^3}{60} + \cfrac{500x^2}{60})|_0^2=\\= \cfrac{-800 -4000+2000}{60} +\cfrac{12000}{240} = \cfrac{3000+2000-4000-800}{60}= \cfrac{10}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS