"\\iiint_D y dV, D:2x + 2y +z = 4, x>0,y>0,z>0"
"x\\in[0;2] ,\\\\y\\in[0;2-x],\\\\ z\\in[0;4-2x-2y]"
"\\int_0^2dx\\int_0^{2-x}dy\\int_0^{4-2x-2y} ydz = \\\\=\n\\int_0^2dx\\int_0^{2-x}ydy z|_0^{4-2x-2y} =\\\\=\n\\int_0^2dx \\int_0^{2-x}y(4-2x-2y)dy =\\\\=\n\\int_0^2dx\\int_0^{2-x} (4y - 2xy -2y^2)dy =\\\\=\n\\int_0^2dx (2y^2 - xy^2 - \\frac{2y^3}{3})|_0^{2-x} =\\\\=\n\\int_0^2(2(2-x)^2 - x (2-x)^2 - \\frac{2(2-x)^3}{3})dx =\\\\=\n\\int_0^2((2-x)^2(2-x-\\frac{4-2x}{3}))dx =\\\\=\n\\int_0^2((4-4x+x^2)\\frac{2-x}{3})dx=\\\\=\n\\int_0^2\\frac{4(2-x)-4x(2-x) - x^2(2-x)}{3}dx =\\\\=\\int_0^2\\frac{8-4x-8x+4x^2-2x^2 + x^3}{3}dx = \\\\=\n\\int_0^2(\\frac{8}{3} - 4x + \\frac{2}{3}x^2 + \\frac{x^3}{3})dx = \\\\=\n\\frac{8}{3}x - 2x^2 + \\frac{2x^3}{6} + \\frac{x^4}{12} |_0^2 = \\\\=\n\\frac{16}{3} - 8 + \\frac{8}{3} + \\frac{16}{12} = \\frac{4}{3}"
Comments
Leave a comment