∭DydV,D:2x+2y+z=4,x>0,y>0,z>0
x∈[0;2],y∈[0;2−x],z∈[0;4−2x−2y]
∫02dx∫02−xdy∫04−2x−2yydz==∫02dx∫02−xydyz∣04−2x−2y==∫02dx∫02−xy(4−2x−2y)dy==∫02dx∫02−x(4y−2xy−2y2)dy==∫02dx(2y2−xy2−32y3)∣02−x==∫02(2(2−x)2−x(2−x)2−32(2−x)3)dx==∫02((2−x)2(2−x−34−2x))dx==∫02((4−4x+x2)32−x)dx==∫0234(2−x)−4x(2−x)−x2(2−x)dx==∫0238−4x−8x+4x2−2x2+x3dx==∫02(38−4x+32x2+3x3)dx==38x−2x2+62x3+12x4∣02==316−8+38+1216=34
Comments
Leave a comment