Answer to Question #142084 in Calculus for Promise Omiponle

Question #142084
Evaluate ∬∫D y dV, where the integration volume D is the region bounded by the 3 coordinate planes and 2x+ 2y+z= 4.
1
Expert's answer
2020-11-05T15:32:29-0500

DydV,D:2x+2y+z=4,x>0,y>0,z>0\iiint_D y dV, D:2x + 2y +z = 4, x>0,y>0,z>0


x[0;2],y[0;2x],z[0;42x2y]x\in[0;2] ,\\y\in[0;2-x],\\ z\in[0;4-2x-2y]


02dx02xdy042x2yydz==02dx02xydyz042x2y==02dx02xy(42x2y)dy==02dx02x(4y2xy2y2)dy==02dx(2y2xy22y33)02x==02(2(2x)2x(2x)22(2x)33)dx==02((2x)2(2x42x3))dx==02((44x+x2)2x3)dx==024(2x)4x(2x)x2(2x)3dx==0284x8x+4x22x2+x33dx==02(834x+23x2+x33)dx==83x2x2+2x36+x41202==1638+83+1612=43\int_0^2dx\int_0^{2-x}dy\int_0^{4-2x-2y} ydz = \\= \int_0^2dx\int_0^{2-x}ydy z|_0^{4-2x-2y} =\\= \int_0^2dx \int_0^{2-x}y(4-2x-2y)dy =\\= \int_0^2dx\int_0^{2-x} (4y - 2xy -2y^2)dy =\\= \int_0^2dx (2y^2 - xy^2 - \frac{2y^3}{3})|_0^{2-x} =\\= \int_0^2(2(2-x)^2 - x (2-x)^2 - \frac{2(2-x)^3}{3})dx =\\= \int_0^2((2-x)^2(2-x-\frac{4-2x}{3}))dx =\\= \int_0^2((4-4x+x^2)\frac{2-x}{3})dx=\\= \int_0^2\frac{4(2-x)-4x(2-x) - x^2(2-x)}{3}dx =\\=\int_0^2\frac{8-4x-8x+4x^2-2x^2 + x^3}{3}dx = \\= \int_0^2(\frac{8}{3} - 4x + \frac{2}{3}x^2 + \frac{x^3}{3})dx = \\= \frac{8}{3}x - 2x^2 + \frac{2x^3}{6} + \frac{x^4}{12} |_0^2 = \\= \frac{16}{3} - 8 + \frac{8}{3} + \frac{16}{12} = \frac{4}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment