"\\displaystyle\n\n\\textsf{If surface}\\, S\\, \\textsf{has equation of the form}\\\\\nz = f(x, y), \\, \\textsf{where}\\, (x, y) \\in R\\, \\textsf{and}\\, f\\, \\textsf{has continuous}\\\\ \\textsf{partial derivatives, the surface area}\\\\\\textsf{is given by}\\\\\n\n\nA = \\iint_R \\sqrt{1 + \\left(\\frac{\\partial z}{\\partial x}\\right)^2 + \\left(\\frac{\\partial z}{\\partial y}\\right)^2} \\, \\mathrm{d}A\\\\\n\n\\begin{aligned}\n2y + 4z - x^2 &= 5\\\\\n4z &=5 + x^2 - 2y\\\\\nz &= \\frac{5}{4} + \\frac{x^2}{4} - \\frac{y}{2}\n\\end{aligned}\\\\\n\n\\frac{\\partial z}{\\partial x} = \\frac{x}{2}, \\, \\frac{\\partial z}{\\partial y} = -\\frac{1}{2}\\\\\n\n\\therefore A = \\iint_R \\sqrt{1 + \\frac{x^2}{4} + \\frac{1}{4}} \\, \\mathrm{d}A\\\\\n\n\nA = \\frac{1}{2}\\iint_R \\sqrt{5 + x^2} \\, \\mathrm{d}A\\\\\n\n\n\\textsf{Equation of line AC is}\\, y = 2x,\\\\\nx \\, \\textsf{is integrated from}\\, 0 \\, \\textsf{to}\\, 2. \\\\\n\n\\begin{aligned}\n\\therefore A &= \\frac{1}{2}\\int_0^2 \\int_0^{2x} \\sqrt{5 + x^2} \\,\\mathrm{d}y\\,\\mathrm{d}x\\\\\n&= \\frac{1}{2}\\int_0^2 y\\sqrt{5 + x^2} \\,\\vert_{y=0}^{y=2x}\\mathrm{d}x\\\\\n&= \\frac{1}{2}\\int_0^2 2x\\sqrt{5 + x^2} \\mathrm{d}x\\\\\n&=\\int_0^2 x\\sqrt{5 + x^2} \\mathrm{d}x \\\\\n&=\\frac{1}{2}\\int_0^2 \\sqrt{5 + x^2} \\,\\mathrm{d}(5 + x^2)\\\\\n&=\\frac{1}{2}\\cdot \\frac{2}{3} (5 + x^2)^{\\frac{3}{2}}\\biggr\\vert_0^2\\\\\n&=\\frac{(5 + 4)^{\\frac{3}{2}} - 5^{\\frac{3}{2}}}{3} \\\\\n&= \\frac{27 - 5\\sqrt{5}}{3}\n\\end{aligned}"
Comments
Leave a comment