Find the surface area of the part of the surface 2y+ 4z-x^2= 5 that lies above the triangle with vertices (0,0),(2,0), and (2,4).
1
Expert's answer
2020-11-04T11:23:30-0500
If surfaceShas equation of the formz=f(x,y),where(x,y)∈Randfhas continuouspartial derivatives, the surface areais given byA=∬R1+(∂x∂z)2+(∂y∂z)2dA2y+4z−x24zz=5=5+x2−2y=45+4x2−2y∂x∂z=2x,∂y∂z=−21∴A=∬R1+4x2+41dAA=21∬R5+x2dAEquation of line AC isy=2x,xis integrated from0to2.∴A=21∫02∫02x5+x2dydx=21∫02y5+x2∣y=0y=2xdx=21∫022x5+x2dx=∫02x5+x2dx=21∫025+x2d(5+x2)=21⋅32(5+x2)23∣∣02=3(5+4)23−523=327−55
Comments