f(x,y,z)=x2y2−2y3z2−4x3z2+xyzf(x,y,z) = x^2y^2 - 2y^3z^2 - 4 x^3z^2 + xyzf(x,y,z)=x2y2−2y3z2−4x3z2+xyz
gradf=(∂f∂x,∂f∂y,∂f∂z)grad f = (\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})gradf=(∂x∂f,∂y∂f,∂z∂f)
∂f∂x=2xy2−12x2z2+yz∂f∂y=2x2y−6y2z2+xz∂f∂z=−4y3z−8x3z+xy\frac{\partial f}{\partial x}= 2xy^2 - 12 x^2 z^2 + yz\\ \frac{\partial f}{\partial y} = 2x^2y - 6y^2z^2 + xz\\ \frac{\partial f}{\partial z} = -4y^3z-8x^3z + xy∂x∂f=2xy2−12x2z2+yz∂y∂f=2x2y−6y2z2+xz∂z∂f=−4y3z−8x3z+xy
gradf=(2xy2−12x2z2+yz,2x2y−6y2z2+xz,−4y3z−8x3z+xy)gradf = (2xy^2 - 12 x^2 z^2 + yz ,\\2x^2y - 6y^2z^2 + xz,\\ -4y^3z-8x^3z + xy )gradf=(2xy2−12x2z2+yz,2x2y−6y2z2+xz,−4y3z−8x3z+xy)
And then put (1,−2,−1)(1,-2,-1)(1,−2,−1) into gradfgradfgradf
gradf(1,−2,−1)=(−2,−29,−25)grad f (1,-2,-1) = (-2,-29,-25)gradf(1,−2,−1)=(−2,−29,−25)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments