Given series:
S = 1 - 1 2 − 1 2 2 + 1 2 3 + 1 2 4 − 1 2 5 − 1 2 6 + . . . \frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}-\frac{1}{2^6}+... 2 1 − 2 2 1 + 2 3 1 + 2 4 1 − 2 5 1 − 2 6 1 + ...
Let us rearrange the given terms of the series. Then, we get
S = [ 1 − 1 2 2 + 1 2 4 − 1 2 6 + . . . ] − [ 1 2 − 1 2 3 + 1 2 5 + . . . ] [1 - \frac{1}{2^2} + \frac{1}{2^4} - \frac{1}{2^6} + ... ] - [\frac{1}{2} - \frac{1}{2^3} + \frac{1}{2^5} + ... ] [ 1 − 2 2 1 + 2 4 1 − 2 6 1 + ... ] − [ 2 1 − 2 3 1 + 2 5 1 + ... ]
Recollect the following:
a + a r + a r 2 + a r 3 + . . . + . . . = a 1 − r , a + ar + ar^2 + ar^3 + ... + ... = \frac{a}{1 - r}, a + a r + a r 2 + a r 3 + ... + ... = 1 − r a , where a a a is the first term and r r r is the common ratio of the infinite geometric series.
Using the above, we have
S = [ 1 1 + 1 2 2 ] ( a = 1 , r = − 1 2 2 ) − [ 1 / 2 1 + 1 2 2 ] ( a = 1 , r = − 1 2 2 ) S = [\frac{1}{1+\frac{1}{2^2}}] (a = 1, r = \frac{-1}{2^2}) -
[\frac{1/2}{1+\frac{1}{2^2}}] (a = 1, r = \frac{-1}{2^2}) S = [ 1 + 2 2 1 1 ] ( a = 1 , r = 2 2 − 1 ) − [ 1 + 2 2 1 1/2 ] ( a = 1 , r = 2 2 − 1 )
= 1 5 / 4 − 1 / 2 5 / 4 = \frac{1}{5/4} - \frac{1/2} {5/4} = 5/4 1 − 5/4 1/2
= 4 5 − 2 5 = \frac{4}{5} - \frac{2}{5} = 5 4 − 5 2
= 2 5 = \frac{2}{5} = 5 2 (finite value)
Observe that the sum of the given series is finite value.
Therefore, the given series is convergent.
Ans: Convergent
Given series: 1 + 1 3 2 + 1 3 3 + . . . + 1 3 k + . . . 1 + \frac{1}{3\sqrt2} + \frac{1}{3\sqrt3} + ... +\frac{1}{3\sqrt k} + ... 1 + 3 2 1 + 3 3 1 + ... + 3 k 1 + ...
Consider the series from the given series
1 3 2 + 1 3 3 + . . . + 1 3 k + . . . \frac{1}{3\sqrt2} + \frac{1}{3\sqrt3} + ... + \frac{1}{3\sqrt k} + ... 3 2 1 + 3 3 1 + ... + 3 k 1 + ...
Rewrite the above series as sigma notation.
1 3 2 + 1 3 3 + . . . + 1 3 k = ∑ 2 k 1 3 n \frac{1}{3\sqrt2} + \frac{1}{3\sqrt3} + ... + \frac{1}{3\sqrt k} =\textstyle\sum_2^k\frac{1}{3\sqrt n} 3 2 1 + 3 3 1 + ... + 3 k 1 = ∑ 2 k 3 n 1
Recollect the following:
Auxiliary series Σ 1 n p \Sigma\frac{1}{n^p} Σ n p 1 is convergent series if p p p > 1 and divergent if p ⩽ 1 \leqslant1 ⩽ 1
Using the above, the series ∑ 2 k 1 3 n \textstyle\sum_2^k\frac{1}{3\sqrt n} ∑ 2 k 3 n 1 is divergent because p = 1 2 < 1 p = \frac{1}{2} < 1 p = 2 1 < 1
We know that the convergence or divergence of a series is unaltered by adding or deleting some finite number of terms.
Using the above, the series 1 + ∑ 2 k 1 3 n 1 + \textstyle\sum_2^k\frac{1}{3\sqrt n} 1 + ∑ 2 k 3 n 1 is divergent.
Therefore, the given series is divergent.
Ans: Divergent
Comments