Consider the four leaved rose "r=cos(2\\theta)"
For "r=0" , solve "\\theta" as,
"cos(2\\theta)=0"
"2\\theta=\\frac{\\pi}{2}" in "[0,\\frac{\\pi}{2}]"
"\\theta=\\frac{\\pi}{4}"
The sketch of the curve is as shown in the figure below:
The area enclosed by one loop of the rose is evaluated as,
Area"(A)=2\\int_{\\theta=0}^{\\frac{\\pi}{4}}\\int_{r=0}^{cos(2\\theta)}rdrd\\theta" ....[using symmetry]
"=2\\int_{\\theta=0}^{\\frac{\\pi}{4}}[\\frac{r^2}{2}]_{r=0}^{cos(2\\theta)}d\\theta"
"=2(\\frac{1}{2})\\int_{\\theta=0}^{\\frac{\\pi}{4}}cos^2(2\\theta)d\\theta"
"=\\int_{\\theta=0}^{\\frac{\\pi}{4}}[\\frac{1+cos(4\\theta)}{2}]d\\theta"
"=\\frac{1}{2}\\int_{\\theta=0}^{\\frac{\\pi}{4}}(1+cos(4\\theta))d\\theta"
"=\\frac{1}{2}[\\theta+\\frac{sin(4\\theta)}{4}]_{0}^{\\frac{\\pi}{4}}"
"=\\frac{1}{2}[\\frac{\\pi}{4}+\\frac{0-0}{4}]"
"=\\frac{1}{2}[\\frac{\\pi}{4}+0]"
"=\\frac{\\pi}{8}"
Comments
Leave a comment