Question #140907
Use a double integral to find the area enclosed by one loop of the four-leaved rose r =cos(2 theta).
1
Expert's answer
2020-10-28T17:43:56-0400

Consider the four leaved rose r=cos(2θ)r=cos(2\theta)


For r=0r=0 , solve θ\theta as,


cos(2θ)=0cos(2\theta)=0


2θ=π22\theta=\frac{\pi}{2} in [0,π2][0,\frac{\pi}{2}]


θ=π4\theta=\frac{\pi}{4}


The sketch of the curve is as shown in the figure below:





The area enclosed by one loop of the rose is evaluated as,


Area(A)=2θ=0π4r=0cos(2θ)rdrdθ(A)=2\int_{\theta=0}^{\frac{\pi}{4}}\int_{r=0}^{cos(2\theta)}rdrd\theta ....[using symmetry]


=2θ=0π4[r22]r=0cos(2θ)dθ=2\int_{\theta=0}^{\frac{\pi}{4}}[\frac{r^2}{2}]_{r=0}^{cos(2\theta)}d\theta


=2(12)θ=0π4cos2(2θ)dθ=2(\frac{1}{2})\int_{\theta=0}^{\frac{\pi}{4}}cos^2(2\theta)d\theta


=θ=0π4[1+cos(4θ)2]dθ=\int_{\theta=0}^{\frac{\pi}{4}}[\frac{1+cos(4\theta)}{2}]d\theta


=12θ=0π4(1+cos(4θ))dθ=\frac{1}{2}\int_{\theta=0}^{\frac{\pi}{4}}(1+cos(4\theta))d\theta


=12[θ+sin(4θ)4]0π4=\frac{1}{2}[\theta+\frac{sin(4\theta)}{4}]_{0}^{\frac{\pi}{4}}


=12[π4+004]=\frac{1}{2}[\frac{\pi}{4}+\frac{0-0}{4}]


=12[π4+0]=\frac{1}{2}[\frac{\pi}{4}+0]


=π8=\frac{\pi}{8}


Therefore, the area of one loop of the rose is Area(A)=π8(A)=\frac{\pi}{8} square units.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS