Find the mass and the center of mass of a triangular lamina with vertices (0.0), (1,0) and (0,2) if the density function is p=1+3x+y
Mass,
"M=\\int_0^1\\int_0^2(1+3x+y)\\,dy\\,dx\\\\\n=\\int_0^1[y+3xy+\\frac{y^2}{2}]_0^2dx\\\\\n=\\int_0^1(6x+4)dx=[3x^2+4x]_0^1=7"Thus, mass is 7 unit.
Now,
"Y_{com}=\\frac{1}{M}\\int_0^1\\int_0^2y(1+3x+y)dydx\\\\\n=\\frac{1}{M}\\int_0^1(6x+\\frac{14}{3})dx\\\\\n=23\/21"
Comments
Leave a comment