Answer to Question #140414 in Calculus for Mathew

Question #140414
If f is continuous on [a,b]t hen \underline_{\int_a^b}f(x)dx=\overline{\int_a^b}f(x)dx
1
Expert's answer
2020-11-01T16:43:26-0500

Solution


Since f(x) is continuous on [a,b] then it is uniformly continuous on the interval.

Let ϵ>0\epsilon>0 by uniform continuity there exist a δ>0\delta>0 such that f(x)f(y)<ϵ|f(x)-f(y)|< \epsilon whenever xy<δ|x-y|<\delta such that x,y[a,b]x,y\in [a,b]

We now divide the interval [a,b] into partitions J1,J2,,JnJ_1,J_2,\dots,J_n each of lengths baN\frac{b-a}{N}

By definition

abf(x)dxk=1N(infxJkf(x))Jk\underline{\int_a^bf(x)}dx\leq \sum_{k=1}^N\left(\inf_{x \in J_k}f(x)\right)|J_k|


abf(x)dxk=1N(supxJkf(x))Jk\overline{\int_a^bf(x)}dx\leq \sum_{k=1}^N\left(\sup_{x \in J_k}f(x)\right)|J_k|

abf(x)dxabf(x)dxk=1N(supxJkf(x)infxJkf(x))Jk\overline{\int_a^bf(x)}dx-\underline{\int_a^bf(x)}dx\leq \sum_{k=1}^N\left(\sup_{x \in J_k}f(x)-\inf_{x \in J_k}f(x)\right)|J_k| ...... (1)

However we have

f(x)f(y)<ϵ|f(x)-f(y)|<\epsilon x,yJk\forall x,y \in J_k ,since Jk=baN|J_k|=\frac{b-a}{N} ,In particular we have

f(x)<f(y)+ϵf(x)<f(y)+\epsilon x,yJk\forall x,y\in J_k

Taking suprema in x we obtain

supxJkf(x)f(y)+ϵ\sup_{x\in J_k}f(x) \leq f(y) + \epsilon yJk\forall y\in J_k

And taking infima in y we obtain

supxJkf(x)infyJkf(y)+ϵ\sup_{x\in J_k}f(x) \leq \inf_{y\in J_k} f(y) + \epsilon

Inserting this into (1) we have

abf(x)dxabf(x)dxk=1NϵJk\overline{\int_a^bf(x)}dx-\underline{\int_a^bf(x)}dx\leq \sum_{k=1}^N\epsilon|J_k|


abf(x)dxabf(x)dx(ba)ϵ\overline{\int_a^bf(x)}dx-\underline{\int_a^bf(x)}dx\leq(b-a)\epsilon


But ϵ>0\epsilon >0 is arbitrary and (b-a) is fixed. Thus abf(x)dxabf(x)dx\overline{\int_a^bf(x)}dx-\underline{\int_a^bf(x)}dx cannot be positive, but abf(x)dxabf(x)dx\overline{\int_a^bf(x)}dx\geq\underline{\int_a^bf(x)}dx which implies abf(x)dxabf(x)dx=0\overline{\int_a^bf(x)}dx-\underline{\int_a^bf(x)}dx=0 which complete the proof.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment