Question #140340
Using polar coordinates, evaluate the integral ∫∫R sin(x^2+y^2)dA where R is the region 4≤x^2+y^2≤36.
1
Expert's answer
2020-11-09T13:36:25-0500


Let's draw this region:



Let's move on to polar coordinates

x=rcosφ,y=rsinφ,0<φ<2π,2<r<6x = r\cos \varphi ,\,\,y = r\sin \varphi ,\,\,0 < \varphi < 2\pi ,\,\,2 < r < 6

Then

Rsin(x2+y2)dA=02πdφ26rsinr2dr=1202πdφ26sinr2dr2=12φ02πcosr226=π(cos36cos4)==π(cos4cos36)\begin{array}{l} \int\limits_R {\int {\sin \left( {{x^2} + {y^2}} \right)} } dA = \int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {r\sin {r^2}dr} = \frac{1}{2}\int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {\sin {r^2}d{r^2}} = - \frac{1}{2}\left. \varphi \right|_0^{2\pi }\left. {\cos {r^2}} \right|_2^6 = - \pi (\cos 36 - \cos 4) = \\ = \pi (\cos 4 - \cos 36) \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS