Let's draw this region:
Let's move on to polar coordinates
x = r cos φ , y = r sin φ , 0 < φ < 2 π , 2 < r < 6 x = r\cos \varphi ,\,\,y = r\sin \varphi ,\,\,0 < \varphi < 2\pi ,\,\,2 < r < 6 x = r cos φ , y = r sin φ , 0 < φ < 2 π , 2 < r < 6
Then
∫ R ∫ sin ( x 2 + y 2 ) d A = ∫ 0 2 π d φ ∫ 2 6 r sin r 2 d r = 1 2 ∫ 0 2 π d φ ∫ 2 6 sin r 2 d r 2 = − 1 2 φ ∣ 0 2 π cos r 2 ∣ 2 6 = − π ( cos 36 − cos 4 ) = = π ( cos 4 − cos 36 ) \begin{array}{l}
\int\limits_R {\int {\sin \left( {{x^2} + {y^2}} \right)} } dA = \int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {r\sin {r^2}dr} = \frac{1}{2}\int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {\sin {r^2}d{r^2}} = - \frac{1}{2}\left. \varphi \right|_0^{2\pi }\left. {\cos {r^2}} \right|_2^6 = - \pi (\cos 36 - \cos 4) = \\
= \pi (\cos 4 - \cos 36)
\end{array} R ∫ ∫ sin ( x 2 + y 2 ) d A = 0 ∫ 2 π d φ 2 ∫ 6 r sin r 2 d r = 2 1 0 ∫ 2 π d φ 2 ∫ 6 sin r 2 d r 2 = − 2 1 φ ∣ 0 2 π cos r 2 ∣ ∣ 2 6 = − π ( cos 36 − cos 4 ) = = π ( cos 4 − cos 36 )
Comments