Let's draw this region:
Let's move on to polar coordinates
x=rcosφ, y=rsinφ, 0<φ<2π, 2<r<6x = r\cos \varphi ,\,\,y = r\sin \varphi ,\,\,0 < \varphi < 2\pi ,\,\,2 < r < 6x=rcosφ,y=rsinφ,0<φ<2π,2<r<6
Then
∫R∫sin(x2+y2)dA=∫02πdφ∫26rsinr2dr=12∫02πdφ∫26sinr2dr2=−12φ∣02πcosr2∣26=−π(cos36−cos4)==π(cos4−cos36)\begin{array}{l} \int\limits_R {\int {\sin \left( {{x^2} + {y^2}} \right)} } dA = \int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {r\sin {r^2}dr} = \frac{1}{2}\int\limits_0^{2\pi } {d\varphi } \int\limits_2^6 {\sin {r^2}d{r^2}} = - \frac{1}{2}\left. \varphi \right|_0^{2\pi }\left. {\cos {r^2}} \right|_2^6 = - \pi (\cos 36 - \cos 4) = \\ = \pi (\cos 4 - \cos 36) \end{array}R∫∫sin(x2+y2)dA=0∫2πdφ2∫6rsinr2dr=210∫2πdφ2∫6sinr2dr2=−21φ∣02πcosr2∣∣26=−π(cos36−cos4)==π(cos4−cos36)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments