The distribution of electric charge can be described in polar coordinates as:
"x=rcos\\theta, y=rsin\\theta, r^2= x^2+y^2" hence
"0\\leq r\\leq \\sqrt{2}" and "0 \\leq \\theta \\leq 2\\pi"
The total charge on the disk would the the double integral of the density function:
"\\int_0^{2\\pi}\\int_0^{\\sqrt{2}}(r^2+17)rdrd\\theta=\\int_0^{2\\pi}\\int_0^{\\sqrt{2}}(r^3+17r)drd\\theta="
"=\\int_0^{2\\pi}(\\frac{r^4}{4}+\\frac{17r^2}{2})\\mid_0^{\\sqrt{2}}d\\theta=\\int_0^{2\\pi}(\\frac{4}{4}+\\frac{17\\cdot2}{2}-\\frac{0}{4}-\\frac{17\\cdot0}{2})d\\theta="
"=\\int_0^{2\\pi}18d\\theta=18\\theta\\mid_0^{2\\pi}=18\\cdot2\\pi-18\\cdot0=36\\pi"
Answer: "36\\pi"
Comments
Leave a comment