"\\displaystyle\n\n\\textsf{We convert to polar co-ordinates}\\\\\n\n\\mathrm{d}A = r\\mathrm{d}r\\mathrm{d}\\theta\\\\\n\nx = r\\cos\\theta\\\\\n\ny = r\\sin\\theta\\\\\n\nx^2 + y^2 = r^2\\\\\n\n\\textsf{Since}\\, R\\, \\textsf{is the region above the}\\, x-\\textsf{axis},\\\\\\textsf{we only consider the first and}\\\\\\textsf{second quadrants, and thus evaluate}\\\\\\textsf{the double integral.}\\\\\n\n\\theta\\, \\textsf{is from}\\, 0 \\, \\textsf{to}\\, \\pi\\\\\n\nr\\, \\textsf{is from}\\, 0 \\, \\textsf{to}\\, 5\\\\\n\n\\begin{aligned}\n\\therefore \\iint_R \\cos(x^2 + y^2) \\, \\mathrm{d}A &= \\int_0^5\\int_0^\\pi \\cos(x^2 + y^2) \\, r\\mathrm{d}\\theta \\mathrm{d}r\\\\\n&= \\pi\\int_0^5 \\cos(r^2) \\, r \\mathrm{d}r\\\\\n&= \\frac{\\pi\\sin(r^2)}{2} \\biggr\\vert_0^5\\\\\n&= \\frac{\\pi\\sin(25)}{2}\n\\end{aligned}\\\\\n\n\\textsf{The area of the region is}\\,\\frac{\\pi\\sin(25)}{2}"
Comments
Leave a comment