SolutionSTEP 1
Convert the upper bound of the integral for x into polar coordinates. The result is a circle of radius 2 centered at the origin.
x=2−y2⟹x2=2−y2⟹x2+y2=2r2=2⟹r=2
STEP 2
Convert the other bounds into polar coordinates. These tell us that the angle ranges from to 4π
I.e the region is a wedge of the circle of radius 2, with an angle sweeping from zero to 4π
x=y⟹θ=4πy=0⟹θ=0
STEP 3
Convert the function into polar coordinates
=x+y=r⋅cosθ+r⋅sinθ=0∫4π0∫2(r⋅cosθ+r⋅sinθ)r δr δθ=0∫4π0∫2r2(cosθ+sinθ)r δr δθ
STEP 4
Integrate the function with respect to r
=0∫4π[31r3(cosθ+sinθ)]02δθ=0∫4π322(cosθ+sinθ)δθ
STEP 5
Integrate the function with respect to theta
=[322(sinθ−cosθ)]04π=322−−−−>Answer
Comments