Question #140337
Evaluate the following integral after converting to polar coordinates: ∫(0 to 1)∫(y to sqrt(2-y^2)) (x+y) dx dy
1
Expert's answer
2020-11-08T18:35:24-0500
SolutionSolution

STEP 1

Convert the upper bound of the integral for xx into polar coordinates. The result is a circle of radius 2\sqrt 2 centered at the origin.


x=2y2    x2=2y2    x2+y2=2r2=2    r=2x=\sqrt{2-y^2} \implies x^2=2-y^2 \implies x^2+y^2=2\\ r^2=2 \implies r=\sqrt 2

STEP 2

Convert the other bounds into polar coordinates. These tell us that the angle ranges from to π4\frac{\pi}{4}

I.e the region is a wedge of the circle of radius 2\sqrt 2, with an angle sweeping from zero to π4\frac{\pi}{4}

x=y    θ=π4y=0    θ=0x=y \implies \theta=\frac{\pi}{4}\\ y=0 \implies \theta=0

STEP 3

Convert the function into polar coordinates


=x+y=rcosθ+rsinθ=0π402(rcosθ+rsinθ)r δr δθ=0π402r2(cosθ+sinθ)r δr δθ=x+y = r \cdot cos \theta + r \cdot sin \theta\\ =\intop_0^{\frac{\pi}{4}} \intop_0^{\sqrt{2}}( r \cdot cos \theta + r \cdot sin \theta)r\ \delta r\ \delta \theta\\ =\intop_0^{\frac{\pi}{4}} \intop_0^{\sqrt{2}}r^2( cos \theta + sin \theta)r\ \delta r\ \delta \theta\\

STEP 4

Integrate the function with respect to rr


=0π4[13r3(cosθ+sinθ)]02δθ=0π4223(cosθ+sinθ)δθ= \intop_0 ^{\frac{\pi}{4}}[\frac{1}{3}r^3(cos \theta+sin \theta)]_0^{\sqrt{2}} \delta \theta\\ = \intop_0 ^{\frac{\pi}{4}}\frac{2 \sqrt{2}}{3}(cos \theta+sin \theta) \delta \theta

STEP 5

Integrate the function with respect to theta

=[223(sinθcosθ)]0π4=223>Answer= [\frac{2 \sqrt{2}}{3}(sin \theta-cos \theta) ]_0^{\frac{\pi}{4}}=\frac{2 \sqrt{2}}{3}---->Answer



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS