S o l u t i o n Solution S o l u t i o n STEP 1
Convert the upper bound of the integral for x x x into polar coordinates. The result is a circle of radius 2 \sqrt 2 2 centered at the origin.
x = 2 − y 2 ⟹ x 2 = 2 − y 2 ⟹ x 2 + y 2 = 2 r 2 = 2 ⟹ r = 2 x=\sqrt{2-y^2} \implies x^2=2-y^2 \implies x^2+y^2=2\\
r^2=2 \implies r=\sqrt 2 x = 2 − y 2 ⟹ x 2 = 2 − y 2 ⟹ x 2 + y 2 = 2 r 2 = 2 ⟹ r = 2
STEP 2
Convert the other bounds into polar coordinates. These tell us that the angle ranges from to π 4 \frac{\pi}{4} 4 π
I.e the region is a wedge of the circle of radius 2 \sqrt 2 2 , with an angle sweeping from zero to π 4 \frac{\pi}{4} 4 π
x = y ⟹ θ = π 4 y = 0 ⟹ θ = 0 x=y \implies \theta=\frac{\pi}{4}\\
y=0 \implies \theta=0 x = y ⟹ θ = 4 π y = 0 ⟹ θ = 0
STEP 3
Convert the function into polar coordinates
= x + y = r ⋅ c o s θ + r ⋅ s i n θ = ∫ 0 π 4 ∫ 0 2 ( r ⋅ c o s θ + r ⋅ s i n θ ) r δ r δ θ = ∫ 0 π 4 ∫ 0 2 r 2 ( c o s θ + s i n θ ) r δ r δ θ =x+y = r \cdot cos \theta + r \cdot sin \theta\\
=\intop_0^{\frac{\pi}{4}} \intop_0^{\sqrt{2}}( r \cdot cos \theta + r \cdot sin \theta)r\ \delta r\ \delta \theta\\
=\intop_0^{\frac{\pi}{4}} \intop_0^{\sqrt{2}}r^2( cos \theta + sin \theta)r\ \delta r\ \delta \theta\\ = x + y = r ⋅ cos θ + r ⋅ s in θ = 0 ∫ 4 π 0 ∫ 2 ( r ⋅ cos θ + r ⋅ s in θ ) r δr δ θ = 0 ∫ 4 π 0 ∫ 2 r 2 ( cos θ + s in θ ) r δr δ θ
STEP 4
Integrate the function with respect to r r r
= ∫ 0 π 4 [ 1 3 r 3 ( c o s θ + s i n θ ) ] 0 2 δ θ = ∫ 0 π 4 2 2 3 ( c o s θ + s i n θ ) δ θ = \intop_0 ^{\frac{\pi}{4}}[\frac{1}{3}r^3(cos \theta+sin \theta)]_0^{\sqrt{2}} \delta \theta\\
= \intop_0 ^{\frac{\pi}{4}}\frac{2 \sqrt{2}}{3}(cos \theta+sin \theta) \delta \theta = 0 ∫ 4 π [ 3 1 r 3 ( cos θ + s in θ ) ] 0 2 δ θ = 0 ∫ 4 π 3 2 2 ( cos θ + s in θ ) δ θ
STEP 5
Integrate the function with respect to theta
= [ 2 2 3 ( s i n θ − c o s θ ) ] 0 π 4 = 2 2 3 − − − − > A n s w e r = [\frac{2 \sqrt{2}}{3}(sin \theta-cos \theta) ]_0^{\frac{\pi}{4}}=\frac{2 \sqrt{2}}{3}---->Answer = [ 3 2 2 ( s in θ − cos θ ) ] 0 4 π = 3 2 2 − − − − > A n s w er
Comments