(a)
m=∫0Ldx∫0sinπxLydy=∫0Ly22∣0sinπxLdx=12∫0Lsin2πxLdx=m=\int_{0}^{L}dx\int_{0}^{sin\frac{\pi x}{L}}ydy=\int_{0}^{L}\frac{y^2}{2}\vert_{0}^{sin\frac{\pi x}{L}} dx=\frac{1}{2} \int_{0}^{L} sin^{2} \frac{\pi x}{L} dx=m=∫0Ldx∫0sinLπxydy=∫0L2y2∣0sinLπxdx=21∫0Lsin2Lπxdx=
=∫0L(1−cos2πxL)dx=(x−L2πsin2πxL)∣0L=L.= \int_{0}^{L}(1-cos\frac{2 \pi x}{L}) dx= (x-\frac{L}{2\pi}sin\frac{2 \pi x}{L})|_{0}^{L} =L.=∫0L(1−cosL2πx)dx=(x−2πLsinL2πx)∣0L=L.
(b)
σ=r,0≤φ≤π,1≤r≤2.\sigma=r, 0\leq \varphi\leq \pi, 1\leq r\leq 2.σ=r,0≤φ≤π,1≤r≤2.
m=∫0πdφ∫12r⋅rdr=π∫12r2dr=13πr3∣12=7π3.m=\int_{0}^{\pi}d\varphi \int_{1}^{2}r\cdot rdr=\pi \int_{1}^{2}r^2dr=\frac13\pi r^3|_{1}^{2}=\frac{7\pi}{3}.m=∫0πdφ∫12r⋅rdr=π∫12r2dr=31πr3∣12=37π.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments