Question #140444

Find Fourier integral of 𝑓(𝑥) = 𝐻(𝑥 − 1) − 𝐻(𝑥 − 2)


1
Expert's answer
2020-10-26T20:24:35-0400
12π(H(t1)H(t2))eiwtdt=\dfrac{1}{\sqrt{2\pi}}\displaystyle\int_{-\infin}^\infin(H(t-1)-H(t-2))e^{iwt}dt=

=12πδ(w)+ieiw2πw(12πδ(w)+ie2iw2πw)==\dfrac{1}{\sqrt{2\pi}}\delta(w)+\dfrac{ie^{iw}}{\sqrt{2\pi }w}-\big(\dfrac{1}{\sqrt{2\pi}}\delta(w)+\dfrac{ie^{2iw}}{\sqrt{2\pi }w}\big)=

=ieiw(1ieiw)2πw=\dfrac{ie^{iw}(1-ie^{iw})}{\sqrt{2\pi }w}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS