Question #140417
Any continuous function f defined on a closed interval I=[a,b] is uniformly continuous.Prove
1
Expert's answer
2020-10-26T20:21:06-0400

If ff is not continuous then there exist ϵ>0\epsilon >0 such that for any δ>0,\delta >0, must exist points xk,ykx_k, y_k such that xkyk<δ2k|x_k-y_k|<\frac{\delta}{2^k} but f(xk)f(yk)>ϵ|f(x_k)-f(y_k)|>\epsilon for each k>0.k>0. Now the sequence is bounded by the interval, hence by Bolzano-Weirstrass a subsequence of xk{x_k} which converges. For simplicity let us call this sequence also as xk.{x_k}. Now let xkx.x_k\rightarrow x. Then we claim ykx.y_k\rightarrow x. Let ϵ>0\epsilon'>0 be given. Then there exists k1,N>0,k_1, N>0, such that δ2k1<ϵ2\frac{\delta}{2^{k_1}}<\frac{\epsilon^{'}}{2} and xkx<ϵ  kN.|x_{k}-x|<\epsilon' \ \forall \ k\geq N. We take k=max{k1,N}.k=max\{k_{1},N\}.

By triangle inequality ykxykxk+xkx|y_k-x|\leq |y_k-x_k|+|x_k-x|<δ2k1+ϵ2δ2k+ϵ2<ϵ2+ϵ2=ϵ.<\frac{\delta}{2^{k_1}}+\frac{\epsilon^{'}}{2} \leq \frac{\delta}{2^k}+\frac{\epsilon'}{2}< \frac{\epsilon'}{2}+\frac{\epsilon'}{2}= \epsilon'.

Now ff being continuous, f(yk)f(x).f(y_k)\rightarrow f(x). Also, f(xk)f(x).f(x_k)\rightarrow f(x). So given ϵ>0\epsilon>0 there exist N1,N2N_1,N_2 such that for all k>N1,N2k>N_1,N_2 ,f(xk)f(x)<ϵ2,f(yk)f(x)<ϵ2.,|f(x_k)-f(x)|<\frac{\epsilon}{2}, |f(y_k)-f(x)|<\frac{\epsilon}{2}. Hence f(xk)f(yk)f(xk)f(x)+f(yk)f(x)|f(x_k)-f(y_k)|\leq |f(x_k)-f(x)|+|f(y_k)-f(x)| ϵ\leq \epsilon contradicting f(xk)f(yk)>ϵ.|f(x_k)-f(y_k)|>\epsilon .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS