"\\displaystyle\n\nP(x)=a_1+2a_2x +...+(n+1)a_{n+1}x^n\\\\\n\nP(x) \\,\\textsf{can generally be written as,}\\\\\n\nP(x) = \\sum_{k = 1}^{n + 1} k a_k x^{k - 1}\\\\\n\n\n\\int_a^b P(x) \\, \\mathrm{d}x = \\int_a^b \\sum_{k = 1}^{n + 1} k a_k x^{k - 1}\\, \\mathrm{d}x\\\\\n\n\\textsf{Interchanging summation for integration, we have}\\\\\n\n\\int_a^b P(x) \\, \\mathrm{d}x = \\sum_{k = 1}^{n + 1} k a_k \\int_a^b x^{k - 1}\\, \\mathrm{d}x\\\\\n\n\\int_a^b P(x) \\, \\mathrm{d}x = \\sum_{k = 1}^{n + 1} \\cancel{k} a_k \\frac{x^{k}}{\\cancel{k}}\\vert_a^b + C\\\\\n\n\n\\therefore\\int_a^b P(x) \\, \\mathrm{d}x = \\sum_{k = 1}^{n + 1} a_k (b^k - a^k)+ C\\\\"
Comments
Leave a comment